PROBING THE CLUSTERING EFFECTS IN NUCLEAR EXCITATIONS

Yanlin Ye School of Physics and State Key Lab of Nuclear Physics and Technology , Peking University

COMEX5, Sept. 14-18, 2015 in Krakow, Poland

Outline

- I. Clustering phenomena
- II. How to probe
 - II.1 for ground states II.2 for excited states
- III. Newly performed experiments
- IV. Summary

Clustering in the universe

Annu.Rev. Astron. Astrophysics 41(2003)57

疏散星团 M45(昴星团)

Clustering in hadrons

QCD: There are many other possible color singlets.

Clustering in HI Collisions

PRL 108, 062702 (2012)

PHYSICAL REVIEW LETTERS

week ending 10 FEBRUARY 2012

Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

K. Hagel,¹ R. Wada,^{2,1} L. Qin,¹ J. B. Natowitz,¹ S. Shlomo,¹ A. Bonasera,^{1,3} G. Röpke,⁴ S. Typel,⁵ Z. Chen,² 35 15 B(T) d 30 B(T) t B(T) ³He O B(T) ⁴He 25 Ο Ο Ο 20 10 B(p,T), MeV T, MeV 0 15 10 0 0 5 5 0 0 0.01 -5 0.02 0.03 0.04 0 0.005 0.01 0.015 0 ρ, nuc/fm³ ρ, nuc/fm³ Juster IISIU

Clustering in the fission process

PHYSICAL REVIEW C 90, 011601(R) (2014)

Nucleation and cluster formation in low-density nucleonic matter: A mechanism for ternary fission

S. Wuenschel,¹ H. Zheng,¹ K. Hagel,¹ B. Meyer,² M. Barbui,¹ E. J. Kim,^{1,3} G. Röpke,⁴ and J. B. Natowitz¹ ¹Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

α-preformation in heavy nuclei: a long standing problem

Phys. Scr. 89 (2014) 054027 (6pp)

doi:10.1088/0031-8949/89/5/054027

Alpha-particle formation and decay rates from Skyrme–HFB wave functions

D E Ward, B G Carlsson and S Åberg

Mathematical Physics, LTH, Lund University, PO Box 118, S-22100 Lund, Sweden

cluster, called the *formation amplitude* [15],

$$g_L(r_{aD}) = \int \mathcal{A}\left[\Phi_J^{(D)}(\xi_D), \Phi_0^{(a)}(\xi_a)Y_L(\hat{r}_{aD})\right]_{IM}^* \\ \times \Psi_{IM}^{(M)}(\xi_M) \,\mathrm{d}\xi_D \,\,\mathrm{d}\xi_a \,\,\mathrm{d}\hat{r}_{aD},$$

Model	\mathcal{M}
SLy4, volume pairing	-3.7897 -3.1409
UNEDF1	-5.7080
ODL	0.2111

Figure 5. Reduced widths at the touching radius, as a function of the mother nucleus neutron number. The error bars show experimental values, the dashed line results from the UDL formula. The circles, triangles and squares show results from microscopic HFB calculations using different effective interactions. The microscopic results are normalized with the constant factor 10^{-M} .

Clustering in stable light nuclei

464 Supplement of the Progress of Theoretical Physics, Extra Number, 1968

The Systematic Structure-Change into the Molecule-like Structures in the Self-Conjugate 4n Nuclei

Kiyomi IKEDA,*) Noboru TAKIGAWA and Hisashi HORIUCHI

Clustering in unstable nuclei – a new area

PTEP,2012,01A202

JPG37(10)064021 PR432(06)43

Impact on the nuclear-astrophysics

Progress of Theoretical Physics Supplement No. 196, 2012

Alpha-Cluster Dominance in the αp Process in Explosive Hydrogen Burning

Shigeru KUBONO,¹ N. Binh DAM,² S. HAYAKAWA,¹ H. HASHIMOTO,¹ D. KAHL,¹ H. YAMAGUCHI,¹ Y. WAKABAYASHI,³ T. TERANISHI,⁴ N. IWASA,⁵
T. KOMATSUBARA,⁶ S. KATO,⁷ A. CHEN,⁸ S. CHERUBINI,⁹ S. H. CHOI,¹⁰
I. S. HAHN,¹¹ J. J. HE,¹² Hong Khiem LE,² C. S. LEE,¹³ Y. K. KWON,¹³
S. WANAJO¹⁴ and H.-T. JANKA¹⁴

¹Center for Nuclear Study, University of Tokyo, Wako 351-0198, Japan

Nucleosynthesis by alpha particles and heavier 4n nuclei are of great interest as they would involve nuclear cluster resonances. The role of nuclear clustering is discussed for nucleosynthesis with the Cluster Nucleosynthesis Diagram (CND) proposed before, especially those involving alpha induced reactions, based on our recent works of (α, p) reactions with low energy RI beams. We present experimental results that alpha resonances play a crucial role for the (α, p) reaction cross sections. Molecular resonances are also briefly discussed along this line for O- and C-burning.

Outline

- I. Clustering phenomena
- II. How to probe
 II.1 for ground states
 II.2 for excited states
- III. Some new experiments
- **IV. Summary**

Need theoretical predictions

Theory:AMD, GCM(RGM), MO, GTCM, FMD, OCM, TCSM, TCHO(DHO), ...

Progress of Theoretical Physics Supplement No. 192, 2012

Recent Developments in Nuclear Cluster Physics

Hisashi HORIUCHI,^{1,2} Kiyomi IKEDA³ and Kiyoshi KAT $\bar{0}^4$

¹Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

Progress in Particle and Nuclear Physics 82 (2015) 78–132

Review

Cluster models from RGM to alpha condensation and beyond

Y. Funaki^{a,*}, H. Horiuchi^{b,c}, A. Tohsaki^b

^a Nishina Center for Accelerator-Based Science, The institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

^b Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

^c International Institute for Advanced Studies, Kizugawa 619-0225, Japan

Need firstly inclusive (missing mass) observations (an example)

Eur. Phys. J. A (2011) 47: 44

Outline

- I. Clustering phenomena
- II. How to probe
 II.1 for ground states
 II.2 for excited states
- III. Some new experiments
- **IV. Summary**

Knockout reaction (p, pC) in studying the ground state clustering

Ex.: ⁸He(p, p⁶He) 2n

PKU group experiment at RIKEN

⁸He + H,C at 82.3 MeV/u

Physics Letters B 707 (2012) 46-51

Probing the halo and cluster structure of exotic nuclei^{*}

YE Yan-Lin(叶沿林)¹⁾ LÜ Lin-Hui(吕林辉) CAO Zhong-Xin(曹中鑫) XIAO Jun (肖军)

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Criterion for a sudden knockout

$$R = \Delta p_{\mathrm{B,rel}}/p_{\mathrm{p}} < 0.15$$

[26]. Assuming that projectile A is composed of B and C (A=B+C) and B makes a quasi-free collision with the target (a proton target for example), according to momentum conservation the magnitude of the momentum of the recoiled proton $p_{\rm p}$ in the laboratory system is equal to that transferred to constituent B, the latter is exactly the same as the relative momentum $p_{B,rel}$ of B seen in the projectile rest frame. After the sudden collision, B tends to leave spectator C by overcoming the attraction force between them and will lose part of its momentum according to:

$$\Delta p_{\rm B,rel} = \int f dt = \int \frac{d\Phi}{dr} dt = \int \frac{d\Phi}{v_{\rm r}} dt = \int \frac{d\Phi}{v_{\rm r}} \\ \approx \frac{m_{\rm B} S_{\rm B}}{p_{\rm B,rel}} = \frac{m_{\rm B} S_{\rm B}}{p_{\rm P}} \left(\text{for } \Delta p_{\rm B,rel} \ll p_{\rm P} \right). \quad (1)$$

⁶He core knockout from 80 AMeV ⁸He by p target

RMP38(1966)121; RMP45(1973)6

Three arguments: i) mean free path: $R = \frac{1}{\rho\sigma}$ must be large enough to avoid multi-scattering

Differing Sensitivity to the BSWF

V.R. Pandharipande et al., Rev. Mod. Phys. 69 (1997) 981.

- ii) wave length: small enough to avoid collective excitation (no problem for a proton)
- iii) high momentum transfer for a localized interaction

requiring high energy (100-1000 MeV p) for probing inner orbits; but moderate energy is ok for probing surface nucleons (low binding)

- Iow binding energy is in favor of the sudden knockout assumption
- heavier fragment knockout requires higher incident energy.
 - sudden knockout is better satisfied by a specific range of the recoiled proton angle.

⁶He core and recoil p correlation For ⁸He beam at 82.3 MeV/u;

Figure 2: Polar angle correlations between the recoil protons and the forward moving ⁶He fragments for (a) CH₂ target and (b) Carbon target, measured in the experiment using ⁸He beam at 82.3 MeV/u. The solid curve is the kinematics relation for ⁶He + p free scattering at 82.3 MeV/u. The frames with dashed line denote the event selection for the core fragment knockout (frame F) and the valence neutron knockout (frame N), respectively.

⁶He E-angle

For ⁶He core knockout events

Figure 4: Differential cross sections for ⁶He core fragments knocked out (K.O.) from ⁸He projectiles at 82.3 MeV/u (the fulled diamonds). Data for elastic scattering of ⁶He on proton target are also presented by the circles [22]. The dashed line represents the Glauber model calculation for elastic scattering, whereas the solid line displays the same kind of calculation but with a reduced matter radii for ⁶He.

Great opportunities at BigRIPS + SAMURAI Ex: Proposals for ¹⁴Be, ¹⁸⁻²⁰C, ¹⁵⁻¹⁹F.....

Outline

- I. Clustering phenomena
- **II. How to probe**
 - II.1 for ground states
 - **II.2 for excited states**
- III. Newly performed experiments
- **IV. Summary**

Well established cluster states:

```
0^{+}_{2} (7.65 MeV) state in {}^{12}C,
0^{+}_{2} (6.05 MeV) and 0^{+}_{3} (12.05 MeV) in {}^{16}O;
0^{+}_{4} (8.03 MeV) in {}^{20}Ne
```

```
a band in ^{10}Be
0<sup>+</sup><sub>3</sub> (10.3 MeV) in ^{12}Be
```

Optimum beam energy 20-30 MeV/u

PHYSICAL REVIEW C, VOLUME 63, 034615

©2001

Incident-energy dependence of the fragmentation mechanism reflecting the cluster structure of the ¹⁹B nucleus

Hiroki Takemoto

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

Hisashi Horiuchi Department of Physics, Kyoto University, Kyoto 606-8502, Japan

the fraction of the dynamical component of the coincident cross sections between He and Li isotopes in 13B+14N and 19B+14N reactions.

Freer et al., PRL82(1999) 1383; PRC63 (2001)034301 Charity et al., PRC76(2007)064313 no small angle (low E_{rel}) detection

Observables determining the cluster formation in a resonant state (Ex: ¹²Be, 10.3 MeV state)

PHYSICAL REVIEW C 83, 044319 (2011)

Ex:

Imprint of adiabatic structures in monopole excitations of ¹²Be

Makoto Ito

Department of Pure and Applied Physics, Kansai University, Yamate-cho 3-3-35, Suita 564-8680, Japan, Research Center for Nuclear Physics (RCNP), Osaka University, Mihogaoka 10-1, Suita 567-0047, Japan, and RIKEN Nishina Center for Accelerator-based Science, RIKEN, Wako, 351-0198 Saitama, Japan

Ex: An exp. at RIBLL1@HIRFL, Lanzhou

Collaborators

PRL 112, 162501 (2014)

week ending 25 APRIL 2014

Observation of Enhanced Monopole Strength and Clustering in ¹²Be

Z.H. Yang (杨再宏),¹ Y.L. Ye (叶沿林),^{1,*} Z.H. Li (李智焕),¹ J.L. Lou (楼建玲),¹ J.S. Wang (王建松),²
D.X. Jiang (江栋兴),¹ Y.C. Ge (葛愉成),¹ Q.T. Li (李奇特),¹ H. Hua (华辉),¹ X.Q. Li (李湘庆),¹ F.R. Xu (许甫荣),¹
J.C. Pei (裴俊琛),¹ R. Qiao (乔锐),¹ H. B. You (游海波),¹ H. Wang (王赫),^{1,3} Z.Y. Tian (田正阳),¹ K. A. Li (李阔昂),¹
Y.L. Sun (孙叶磊),¹ H.N. Liu (刘红娜),^{1,3} J. Chen (陈洁),¹ J. Wu (吴锦),^{1,3} J. Li (李晶),¹ W. Jiang (蒋伟),¹
C. Wen (文超),^{1,3} B. Yang (杨彪),¹ Y.Y. Yang (杨彦云),² P. Ma (马朋),² J.B. Ma (马军兵),² S.L. Jin (金仕纶),²
J.L. Han (韩建龙),² and J. Lee (李暁菁)³

¹State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ²Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan (Received 10 December 2013; published 22 April 2014)

In a recent breakup-reaction experiment using a ¹²Be beam at 29 MeV/nucleon, the 0⁺ band head of the expected ⁴He + ⁸He molecular rotation was clearly identified at about 10.3 MeV, from which a large monopole matrix element of 7.0 ± 1.0 fm² and a large cluster-decay width were determined for the first time. These findings support the picture of strong clustering in ¹²Be, which has been a subject of intense investigations over the past decade. The results were obtained thanks to a specially arranged detection system around zero degrees, which is essential in determining the newly emphasized monopole strengths to signal the cluster formation in a nucleus.

PHYSICAL REVIEW C 91, 024304 (2015)

Helium-helium clustering states in ¹²Be

SCIENCE CHINA Physics. Mechanics & Astronomy September 2014 Vol. 57 No. 9: 1613–1617
PID for 2-[×]He fragments

Uniform calibration of the Si strips and treatment of PID under intense direct beam: [IEEE-NS 61(2014)596, NIMA728(2013)52]

Resolution and efficiency

FIG. 2. Resolution(FWHM) of E_{rel} (a) and detection efficiency (b) for ¹²Be decaying into ⁴He+⁸He. Similar results are also obtained for ¹²Be decaying into ⁶He+⁶He. And for comparison, the efficiency obtained from reference[27] was also shown.

Our exp: ⁶He+⁶He 11.7 13.3 MeV ⁴He+⁸He 10.3 12.1 13.6 MeV

i) Determination of the moment of inertia

PRL 100, 182502 (2008)

week ending 9 MAY 2008

Coexistence of Covalent Superdeformation and Molecular Resonances in an Unbound Region of ¹²Be

Q value in inelastic scattering, or reconstruction from binary decay: $E_{\text{rel}} = M^* - M_a - M_b = \sqrt{M^2} - M_a - M_b$ $M^2 = M_a^2 + M_b^2 + 2(T_a + M_a)(T_b + M_b)$ $-2\sqrt{(T_a^2 + 2T_aM_a)(T_b^2 + 2T_bM_b)}\cos\theta$ $E_x = E_{\text{rel}} + E_{\text{thre}}$

For J (quite difficult):

angular distribution of inelastic scattering, or angular correlation from binary decay.

Angular correlation analysis for the 10.3 MeV state in ¹²Be decaying into ⁴He + ⁸He

For small angle inelastic scattering leading to a resonant state with an angular momentum J, which subsequently breaks up into spin-0 fragments, the projected angular correlation spectrum is proportional to $|P_{i}(\cos(\Psi))|^{2}$, with Ψ being the fragment c.m. angle relative to the beam direction.

Confirming the MR band with a large moment of inertia

Determination of the cluster decay width ii) and the cluster SF

2014 Vol. 57 No. 9: 1613-1617 **SCIENCE CHINA** Physics, Mechanics & Astronomy **Determination of the cluster spectroscopic factor of the 10.3 MeV** state in ¹²Be[†] YANG ZaiHong, YE YanLin*, LI ZhiHuan, LOU JianLin, XU FuRong, PEI JunCheng, $N(E) \propto \frac{\Gamma(E)}{[E - E_r - \Delta(E)]^2 + [\Gamma(E)/2]^2} \cdot \left[\Gamma = \Gamma_{\gamma} + \Gamma_{n} + \Gamma_{p} + \Gamma_{\alpha} + \cdots\right]$ the partial is of probability meaning, not energy meaning: $\Gamma_i / \Gamma = \sigma_i / \sigma$ **R-matrix** analysis $\theta_{\alpha}^2 = \frac{\gamma_{\alpha}^2}{\gamma_{w}^2}, \quad \gamma_{W}^2 = \frac{3\hbar^2}{2\mu a^2}.$

$$\Gamma_{\alpha}(E) = 2\gamma_{\alpha}^2 P_I(E), \quad P_I(E) = \frac{ka}{(F_I(ka))^2 + (G_I(ka))^2},$$

where E is the decay energy (or relative energy) and a the channel radius. The latter is generally given by $a = r_0 (A_1^{1/3} + C_1^{1/3})$ $A_2^{1/3}$) with $r_0 \approx 1.4$ fm. For ¹²Be decaying into ⁴He+⁸He, the channel radius is about a = 5 fm. This value was also adopted in AMD calculations [32]. In eq. (2) $F_l(ka)$ and $G_l(ka)$ are regular and irregular Coulomb wave functions [9,31].

All possible decay channels

10.3 MeV(0+) state: $\Gamma = 1.5(2) \text{ MeV}$; $\Gamma = \Gamma_{He} + \Gamma_{Be}$

反应道	阈值	概率	概率	文献结果[33]		
	[MeV]	(E _x =15MeV)	(E _x =12MeV)			
⁴He+®He	9.6	39%	27.6 %	36 %		
6TT	10.1	21%	13.1%	19.3 %		
пет пе	10. 1					
⁴ U - + ⁶ U - + 9m	11 09	0.19%	1.1E-3 %	0.027 %		
ne i ne i zn	11.00					
¹¹ Be+n	3.17	44. 3%	38.3%	40.9 %		
¹⁰ Be+2n	3.67	10.4%	5.6 %	3.7 %		
8D 0	10.40	0.098%	2.1E-3 %	0.028 %		
Be+3n	10. 48					
⁸ Da+4m	12.06	6.9E-5 %		3.4E-6 %		
Derall	12.00					

表格 6.3.2 ¹²Be 各破碎道概率的相空间估算。

10.3 MeV(0+) state: $\Gamma = 1.5(2) \text{ MeV}$; $\Gamma = \Gamma_{He} + \Gamma_{be}$ Kosheninnilov[12]: $\Gamma_{Be}/\Gamma = 0.28 \pm 0.12$ $\Gamma_{He}/\Gamma = 1 - \Gamma_{Be}/\Gamma = 0.72(12)$; $\Gamma_{He} = 1.1(2) \text{ MeV}$ $\gamma^2_{He} = 0.50(9)$; $\theta^2_{He} = 0.53(10)$ (comparable to ⁸Be)

Ex: Determination of the monopole transition strength

T. Yamada et al., PRC85,034315(2012); PTP120,1139(2008)

Isoscaler monopole excitation means a jump of about 35 MeV in a simple singleparticle picture. A strong M(IS) for E_x below ~15 MeV is an indicator of cluster formation

From T. Yamada:

Duality in g.s w.f: mean-field and cluster degrees of freedom

$$\frac{1}{\sqrt{16!}} \det \left| (0s)^4 (0p)^{12} \right| \times \left[\phi_{cm}(\mathbf{R}_{cm}) \right]^{-1} : \text{closed shell}$$

$$= N_0 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[\underbrace{u_{40}(\xi_3, 3\nu)}_{relative wf}(\mathbf{S}\text{-wave}) \\ = N_2 \sqrt{\frac{12!4!}{16!}} A \left\{ \left[\underbrace{u_{42}(\xi_3, 3\nu)}_{relative wf}(\mathbf{D}\text{-wave}) \\ \text{relative wf}(\mathbf{D}\text{-wave}) \\ \text{relative wf}(\mathbf{D}\text{-wave}) \\ \text{Nucl. Phys. 9, 596 (1958/1959)} \right\}$$

 \rightarrow G.S. has mean-field-type and α -cluster degrees of freedom.

Activation of mean-field-type degree of freedom in g.s \Rightarrow Excitation of 1p1h states (3-bump structure) Activation of α -cluster degree of freedom in g.s \Rightarrow Excitation of α +1²C cluster states: 2nd 0+, 3rd 0+ IS monopole operator $\mathcal{O} = \sum_{i=1}^{16} (r_i - R_{cm})^2 = \sum_{i=1}^{4} (r_i - R_{\alpha})^2 + \sum_{i=5}^{16} (r_i - R_{12C})^2 + \frac{3(R_{\alpha} - R_{12C})^2}{relative part}$

Extracting the monopole strength

PHYSICAL REVIEW C 91, 024304 (2015)

Helium-helium clustering states in ¹²Be

Z. H. Yang,¹ Y. L. Ye,^{1,*} Z. H. Li,¹ J. L. Lou,¹ J. S. Wang,² D. X. Jiang,¹ Y. C. Ge,¹ Q. T. Li,¹ H. Hua,¹ X. Q. Li,¹ F. R. Xu,¹ J. C. Pei,¹ R. Qiao,¹ H. B. You,¹ H. Wang,^{1,3} Z. Y. Tian,¹ K. A. Li,^{1,2} Y. L. Sun,¹ H. N. Liu,^{1,3} J. Chen,¹ J. Wu,^{1,3} J. Li,¹ W. Jiang,¹ C. Wen,^{1,3} B. Yang,¹ Y. Liu,¹ Y. Y. Yang,² P. Ma,² J. B. Ma,² S. L. Jin,² J. L. Han,² and J. Lee³

¹State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

$$M(E0) = \langle f | \sum_{i=1}^{A} \frac{1 + \tau_{3i}}{2} (r_i - R_{c.m.})^2 | g.s. \rangle,$$
$$M(IS,0) = \langle f | \sum_{i=1}^{A} (r_i - R_{c.m.})^2 | g.s. \rangle,$$
$$S(IS,0) = \sum_{f} |M(IS,0)|^2 E_f = \frac{2\hbar^2}{m} A R_{rms}^2$$
fraction of the EWSR

DWBA analysis of the resonance CS

$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \sum_{L} a_{L} \left(\frac{d\sigma}{d\Omega}\right)_{L,\text{DWBA}}.$$

transition potential

$$G_0(r) = -\alpha_0^U \left[3U(r) + r \frac{dU(r)}{dr} \right]$$

$$(\alpha_0^m)^2 = \frac{\hbar^2}{2m} \frac{4\pi}{AE_x} \frac{1}{R_{\rm rms}^2} \qquad \qquad \delta_0 = \alpha_0^U R_U = \alpha_0^m c$$

DWBA analysis

GTCM prediction

Fraction: 0.034(10) x 2.2. EWSR: 6727.9 fm⁴ MeV, M(IS): 7.0 +/- 1.0 fm², M(IS) (cluster) ~ 9.0 fm²

Outline

- I. Clustering phenomena
- II. How to probe
 II.1 for ground states
 II.2 for excited states
- III. Newly performed experiments ²⁰O, ¹⁰Be, ¹⁴C
- IV. Summary

missing mass (inelastic or transfer)

$$Q = \left(\frac{m_{\rm A}}{m_{\rm B}} - 1\right) T_{\rm A} + \left(\frac{m_{\rm 3}}{m_{\rm B}} + 1\right) E_{\rm 3} - \frac{2(m_{\rm A}m_{\rm 3}T_{\rm A}T_{\rm 3})^{\mu_{\rm Z}} \cos\theta}{m_{\rm B}}$$

invariant mass

RI beam & recoil target: IM + **MM**

good experiences for IM measurementMM at low recoil energies?

A new experiment in Lanzhou for ²⁰O

Beam: ²⁰O (>10⁴ pps); target: CH_2 ; Measurement: breakup & reconstruction for 0_3^+ ; 0⁻

Main goals: Cluster states in ²⁰O;

Target: $(CH_2)n$, thickness: 100um and 10um Reaction: ${}^{20}0 + p \rightarrow {}^{20}0^* + p$ ${}^{20}0^* \rightarrow {}^{16}C + \alpha$

Online PID

Progress of Theoretical Physics, Vol. 119, No. 3, March 2008

Cluster Structures in Oxygen Isotopes

Naoya FURUTACHI,¹ Masaaki KIMURA,² Akinobu DOTÉ,³ Yoshiko KANADA-EN'YO⁴ and Shinsho ORYU¹

Cluster structures of ¹⁶O,¹⁸O and ²⁰O are investigated using the antisymmetrized molecular dynamics (AMD) plus generator coordinate method (GCM). We have found the $K^{\pi}=0^+_2$ and 0⁻ rotational bands of ¹⁸O that have prominent ¹⁴C+ α cluster structure. The clustering systematics are richer in ²⁰O. We suggest the presence of a $K^{\pi}=0^+_2$ band that is a mixture of the ¹²C+ α +4n and ¹⁴C+⁶He cluster structures. $K^{\pi}=0^+_3$ and 0⁻ bands that have prominent ¹⁶C+ α cluster structure are also found.

AMD+GCM framework

Finally, we perform GCM calculations by employing β as the generator coordinate. The same choice of the generator coordinate has been made in Hartree-Fock+GCM calculations, and also in the study of the clustering properties of ²⁰Ne³³) and ⁴⁴Ti.³⁴) The final wave function is given by a superposition of basis wave functions $\Phi_{ME}^{J\pm}(\beta_i)$, with the generator coordinate β_i and K quantum number, where $|K| \leq 4$ and $|K| \leq 3$ are taken for positive and negative parity states, respectively. The wave function that describes a certain state is given by

$$\Psi_n^{J\pm} = \sum_i c_i^n \Phi_{MK_i}^{J\pm}(\beta_i), \qquad (2.9)$$

where c_i is determined by solving the Hill-Wheeler equation,

$$\delta(\langle \Psi_n^{J\pm} | \hat{H} | \Psi_n^{J\pm} \rangle - \epsilon_n \langle \Psi_n^{J\pm} | \Psi_n^{J\pm} \rangle) = 0.$$
(2.10)

Fig. 9. Level scheme of ²⁰O.

Eur. Phys. J. A (2011) 47: 44

Structures in ²⁰O from the ${}^{14}C({}^{7}Li, p)$ reaction at 44 MeV

H.G. Bohlen¹, W. von Oertzen^{1,a}, M. Milin^{3,b}, T. Dorsch^{1,2}, R. Krücken², T. Faestermann², R. Hertenberger⁴, Tz. Kokalova^{1,c}, M. Mahgoub², C. Wheldon^{1,c}, and H.-F. Wirth^{2,4}

¹ Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany

- ² Department of Physics, Faculty of Science, University of Zagreb, Bijenička 32, HR-10000 Zagreb, Croatia
- ³ Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
- ⁴ Sektion Physik der Universität München, Am Coulombwall 1, D-85748 Garching, Germany

$K^{\pi} = 0_2^+$			$K^{\pi} = 0_2^-$			$K^{\pi} = 0_{4}^{+}$			$K^{\pi} = 0_4^-$		
E_x (MeV)	J^{π}	Γ (keV)	E_x (MeV)	J^{π}	Γ (keV)	E_x (MeV)	J^{π}	Γ (keV)	E_x (MeV)	J^{π}	Γ (keV)
4.458	0+		9.918	(1^{-})	20	9.768	0+	20	11.67	(1^{-})	100
5.237	2^{+}		11.95	(3^{-})	90	10.11	2^{+}	5	12.83	(3^{-})	100
7.754	4^{+}		13.96	(5^{-})	150	11.39	(4^{+})	110	13.44	(5^{-})	65
10.93	(6^+)	40	18.46	(7^{-})	140	13.60	(6^{+})	250	17.35	(7^{-})	210
16.36	(8 ⁺)	90				16.63	(8^+)	110			
						18.61	(10^{+})	190			

Table 2. Experimental excitation energies E_x , spin-parities J^{π} and widths, given for different K^{π} rotational bands proposed for ²⁰O: the parity doublet bands 0_2^+ and 0_2^- , and the parity doublet bands 0_4^+ and 0_4^- . Assignments, which are made from the (2J+1), may have to be confirmed independently, and are given in brackets.

Three strange narrow states

E_x	Г	$\left(\frac{d\sigma}{d\Omega}\right)_{cm}$	$\left(\frac{d\sigma}{d\Omega}\right)_{cm}$	$\left(\frac{d\sigma}{d\Omega}\right)_{cm}$	J^{π}
[MeV]	[keV]	$[\mu b/sr]$	$[\mu b/sr]$	$[\mu b/sr]$	
		$\theta_{Lab}=10^\circ$	$\theta_{Lab} = 20^{\circ}$	$\theta_{Lab} = 39^{\circ}$	
12.50(3)	400(50)	23.5(5)	16.9(5)	16.5(3)	
12.537(9)	15(5)	< 0.2	2.2(2)	0.9(1)	
12.83(2)	100(10)	6.6(3)	4.0(3)	2.8(2)	
13.23(2)	200(20)	11.4(5)	8.0(3)	5.9(2)	
13.44(1)	65(15)	6.3(3)	12.2(4)	5.4(2)	(5^{-})
13.60(1)	250(50)	29.3(5)	16.4(4)	16.9(3)	(6^+)
13.955(8)	150(20)	16.1(4)	15.7(4)	7.5(2)	(5^{-})
14.349(6)	300(30)	21.1(4)	15.0(4)	10.1(2)	
14.382(8)	4(3)	2.2(2)	1.4(2)	0.5(1)	
14.85(5)	40(7)	2.0(5)	2.1(2)	1.7(1)	
15.015(5)	100(10)	cont.	5.5(3)	0.3(2)	
15.247(5)	5(3)	10.2(3)	8.2(3)	5.0(2)	
15.44(2)	200(20)	10.6(3)	7.9(3)	5.6(2)	
15.626(5)	60(10)	3.8(2)	overlap	over lap	
15.72(1)	2(1)	18.9(4)	12.8(5)	10.3(3)	

Stable beam & excited target: MM + IM

good experiences for MM measurement

IM at low recoil energies ?

A new experiment at CIAE - Beijing

- Beam: 45MeV ⁹Be 2pnA(1*10¹⁰pps) (proposed 20pnA) Target: 0.9um ⁹Be / Au Duration: ~ 90 hours

⁴He + ¹⁴C Q= 17.25 MeV

Layout of the experiment

eam : 9Be, 45MeV, 2pnA arget: 9Be, 0.9um ; Au

Online PID

D0 Telescope-PID

U0 Telescope-PID

E_BB7(keV)

E_BB7(keV)

Online PID

D2 Telescope-PID

U2 Telescope-PID

E_SSD(keV)

E_SSD(keV)

¹⁰Be , 2_2^+ state, 7.54 MeV

- The 2₃⁺ state may have cluster structure.
- The 2₃⁺ state decay through n decay and α decay. The nucleon spectroscopic factor is very small (1%).
- α decay threshold : 7.41 MeV
- α decay branching ratio : 3.5(12)×10⁻³ ^[4]

Initial state		Decay	Final state		E_n or E_{α}	Γ_{expt}	ℓ or <i>L</i> , <i>N</i>	Γ_{sp}	S
E_x	J^{π}		E_x	J^{π}					
7.54	2+	${}^{9}\text{Be} + n$ ${}^{6}\text{He} + \alpha$	0 0	$\frac{3/2^{-}}{0^{+}}$	0.730 0.129	$\frac{6.3(8)}{22(8)\times 10^{-3}}$	1 2,2	~ 700 0.43×10^{-3} a	<u>≼0.01</u> 51(19) ª

- I. Clustering everywhere
- II. How to observe

II.1 for ground states II.2 for excited states

- III. newly performed experiments
- IV. Summary

Summary

- Clustering is a general phenomenon in light unstable nuclei.
 - Consistent evidences are required to experimentally justify a cluster state, such as large momentum of inertial, large cluster decay partial width and large selective excitation strength.
 QFS at higher energies for GS and MM + IM
- measurements at lower energies for GS and MiNI + INI measurements at lower energies for RS are good ways to probe the cluster structure.

A lot to be measured !!

- broad 0_3^+ state in ¹²C; 0_2^+ state in ¹⁶O;
- 0_{3}^{+} and 0_{4}^{+} in ¹⁰Be ;
- monopole in ¹⁶O;¹³C; ²⁰Ne;
- chain states in ¹⁴C and ¹⁶C;
 - molecular bands in ¹⁸O , ¹⁸Ne;
 - ¹²Be systematics (⁶He+⁶He ?);
- cluster + GR, ²⁴Mg,²⁸Si ;

