

A new method of production and study of the most exotic neutron rich nuclei

J.N. Wilson, IPN Orsay

CHART OF NUCLIDES

Spontaneous Fission ²⁵²Cf(SF), ²⁴⁸Cm(SF) (Gammasphere, Euroball)

Spontaneous Fission ²⁵²Cf(SF), ²⁴⁸Cm(SF) (Gammasphere, Euroball)

Fission induced by thermal neutrons ²³⁵U(n_{th},f) ²⁴¹Pu(n_{th},f) (EXILL Exogam@ILL)

Spontaneous Fission ²⁵²Cf(SF), ²⁴⁸Cm(SF) (Gammasphere, Euroball)

Fission induced by thermal neutrons ²³⁵U(n_{th},f) ²⁴¹Pu(n_{th},f) (EXILL Exogam@ILL)

Fission induced by fast 1.5 MeV neutrons ²³⁸U(n,f), ²³²Th(n,f) (LICORNE @ IPN Orsay)

Typically over 99% of neutrons 'wasted"

Wasted neutrons contribute to the room background

Placement of gamma detectors impossible without heavy shielding

- > p(⁷Li,⁷Be)n reaction in inverse kinematics
- Focused source of fast neutrons between 0.5 and 4 MeV

- p(⁷Li,⁷Be)n reaction in inverse kinematics
- Focused source of fast neutrons between 0.5 and 4 MeV

- p(⁷Li,⁷Be)n reaction in inverse kinematics
- Focused source of fast neutrons between 0.5 and 4 MeV

- p(⁷Li,⁷Be)n reaction in inverse kinematics
- Focused source of fast neutrons between 0.5 and 4 MeV

LICORNE II

H₂ pressure and flow control system

Hydrogen gas cells

PHYISCS PROGRAM: PROMPT EMISSION IN FISSION

"Development of a kinematically focused neutron source with the p(7Li,n)7Be inverse reaction"

M.Lebois, J.N. Wilson et al., Nucl. Instrum. Meth. A 735 145 (2014)

"Comparative measurement of prompt fission gamma-ray emission from fast neutron induced fission of ²³⁵U and ²³⁸U" *M. Lebois, J.N. Wilson, et al., Phys. Rev. C Rapid Communication In press (2015)*

"Experimental studies of prompt fission neutron spectra" Alix Sardet, CEA/DAM/DIF Bruyeres-le-chatel, Ph.D thesis, 2 Oct. (2015)

COUPLING LICORNE + HPGE GAMMA SPECTROMETER

Physics Cases

EXPERIMENT IN MARCH 2015

LICORNE + MINIBALL (MARCH 2015)

LICORNE + MINIBALL (MARCH 2015)

3 weeks of beam time: ~ 3×10^9 events with M_v >= 3

SELECTION OF PROMPT GAMMA RAYS

SELECTION OF PROMPT GAMMA RAYS

Prompt fission gamma rays

ALL PROMPT GAMMA RAYS

ALL PROMPT GAMMA RAYS

PROMPT GAMMA-RAY SPECTRA

Fission Fragment Isomers (10ns - 10µs)

238U(n,f)

238U(n,f)

SELECTION OF DELAYED GAMMA RAYS

SELECTION OF DELAYED GAMMA RAYS

32

PROMPT GAMMA RAYS IN COINCIDENCE

PROMPT GAMMA RAYS IN COINCIDENCE

PROMPT GAMMA RAYS IN COINCIDENCE

To be continued ...

Conclusions

- ²³⁸U(n,f) or ²³²Th(n,f) reactions can be used to study neutron rich fission fragments for the first time (LICORNE@IPNO)
- Cold fission ($E_n \sim 1.5$ MeV produced with ⁷Li beam)
- Simultaneous production & study of hundreds of exotic nuclei
- Excellent selectivity of fission fragments and their partners via isomer tagging from ~50 ns – few μs (TIPS)

Perspectives

- Hybrid Ge/LaBr3 array to get lifetime information (v-ball)
- Fission tagging with gamma calorimeter or ionisation chamber

A hybrid LaBr₃-Ge array for fast timing spectroscopic studies at the IPN Orsay

- Construction of a hybrid Ge + LaBr₃ array @ IPN Orsay
- Goal: to approach 10% total gamma photopeak efficiency
- LOI (2015) signed by 43 scientists from 17 different institutions
- Run for > 2 months using the ²³⁸U(n,f) and ²³²Th(n,f) reactions
- Workshop planned for early 2016 to physics cases

Collaborators

J. N. Wilson¹, M. Lebois¹, Q. Liqiang¹, R. Shearman^{2,3}, I. Matea¹, S. Oberstedt⁴, A. Oberstedt^{5, 6} R. J. Carroll², P. H. Regan^{1,2}, P. Amador-Celdran⁷, D. L. Bleuel⁸, J. A. Briz⁹, W. N. Catford¹ D. Doherty¹⁰, R. Eloirdi⁷, G. Georgiev¹¹, A. Gottardo³, K. Hadynske-Klek¹², K. Hauschild¹¹ V. Ingeberg¹², J. Ljungvall¹¹, A. Lopez-Martens³, G. Lorusso², R. Lozeva¹³, P. Marini¹⁴ Th. Materna¹⁵, L. Mathieu¹⁴, S. Panebianco¹⁰, Zs. Podolyák¹, A. Porta⁹, K. Resynkina¹¹, S. J. Rose¹², E.Sahin¹², S. Siem¹², A. G. Smith¹⁶, G. Tveten¹², D. Verney³, N. Warr¹⁷, F. Zesier¹² and M. Zielinska¹⁰

1Institut de Physique Nucléaire d'Orsay, 91406 Orsay Cedex, France 2Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 3National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK 4Institute for Reference Materials and Measurements, 2440 Geel, Belgium 5Fundamental Physics, Chalmers University of Technology, 41296 Goteborg, Sweden 6CEA/DAM Ile-de-France, 91297 Arpajon Cedex, France 7Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe, Germany 8Lawrence Livermore National Laboratory, Livermore, California 94551, USA 9Subatech, CNRS/IN2P3, University Nantes, EMN, Nantes, France 10IRFU, CEA Saclay, 91191 Gif-sur-Yvette, France 11CSNSM Orsay, 91405 Orsay, France 12Department of Physics, University of Oslo, Blindern, N-0316 Oslo, Norway 13Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess F-67037 Strasbourg, France 14CENBG, Université de Bordeaux, CNRS/IN2P3, Chemin du Solarium, B.P. 120, 33175 Gradignan, France 15 IRFU, CEA Saclay, 91191 Gif-sur-Yvette, France 16 Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK 17 IKP, University of Koln, Koln, Germany

Z=50

ISOMERS AND PROTON RICH NUCLEI

N=50

¹⁰⁰ Sn	¹⁰¹ Sn	¹⁰² Sn (720 ns)
⁹⁹ In	¹⁰⁰ ln	¹⁰¹ ln
⁹⁸ Cd (190 ns)	⁹⁹ Cd	¹⁰⁰ Cd (60 ns)

M. Lipoglavsek et al., "Polarization charge in ¹⁰²Sn". Phys. Lett B 440, 246 (1998)

R.M. Clark and J.N. Wilson et al. "Yrast and near yrast excitations up to high spin in ¹⁰⁰Cd", Phys. Rev. C61 044311 (2000)

M. Gorska et al., "⁹⁸Cd – The two proton hole spectrum in ¹⁰⁰Sn", Phys. Rev. Lett. 79 2415 (1997)

EXPERIMENTAL SETUP: ENERGY DEPENDENCE OF PROMPT- γ EMISSION. JULY 2013

MULTIPLICITY VERSUS ENERGY DISCRIMINATION: 252Cf

MULTIPLICITY VERSUS ENERGY DISCRIMINATION: 60CO

NEUTRON MULTIPLICITIES

Fission becomes more symmetric with increasing E_n

FIG. 1. Mass-yield curves for monoenergetic-neutroninduced fission of ²³⁸U.

GAS TARGET WINDOW

⁵⁶Fe Neutron Capture and Scattering Cross Sections

ISOMER TAGGING

mercredi 16 septembre 2015

PULSED NEUTRON BEAM

- Average time between fission events is ~100 us
- Effective time window 10 ns 10 µs? Or longer?

LICORNE + ORGAM

mercredi 16 septembre 2015

PROSPECTIVES FOR FUTURE MEASUREMENTS

LICORNE + ORGAM

mercredi 16 septembre 2015

LICORNE NEUTRON SPECTRUM

mercredi 16 septembre 2015

LICORNE GAS TARGET

