Goal:
Search and Measurement of E1 strength around threshold in 70Ni

Why?:
The Distribution of E1 strength function is an important nuclear structure information, directly correlated to neutron skin and EOS.

In nuclear astrophysics E1 strength around threshold influences significantly the r-process.

It is better known (also with a lot of open problems) in stable nuclei but practically not in neutron rich nuclei.
PDR states in nuclei

What We know
- Pygmy Dipole States are strongly correlated with the size of the neutron skin (or proton skin)
- Pygmy Dipole Resonance (PDR) is a «collective» excitation of the least bound neutrons (or protons)
- PDR is mostly of Electric Dipole (E1) character
- PDR is relevant for astrophysical r-process

What we want to know:
- Level of collectivity?
- How (collective) properties change with neutron number?
- How isospin changes mean field?
- In exotic nuclei: does PDR strength exist also below neutron threshold and to which extend?
- No High resolution/statistics measurements available
- Present in all nuclei and mass regions?
- Effect of deformation?
- Proton Pygmy, still to proof?
- "Picture" of PDR, toroidal mode
- From pygmy strength deduce dipole polarizability over more nuclei
- Isovector and Isoscalar mode
PDR is measured in **stable** nuclei
With different probes (in different Labs):
- **real photons**
 (scattering γ, γ, dissociation $\gamma, \gamma, \gamma, n, \gamma, p$
 - $p, \alpha, ^{17}O, \ldots$

LNL, OSAKA, KVI...

ISOSCALAR part of Pygmy
(n & p behave similar)

(p, p'); (α, α'); (^{17}O, $^{17}O'$) ...
(p, p', \gamma); (α, α', γ); (^{17}O, $^{17}O'$, γ) ...

But in unstable nuclei relevant for the r-process?
Experimental Method @ RIBF:
Relativistic Virtual Photon Scattering under coulomb excitation conditions

Using a fast (260AMeV) 70Ni beam on thick 2g/cm2 Au target, we strongly excites E1 IV states, E2 and other states are much less excited, nuclear contributions are strongly suppressed.

Theoretical Predictions in exotic nuclei In 70Ni

Alternatives for exotic nuclei (in part):
- C. break-up/missing mass (R3B, Samurai)
 Talk of K. Boretzky
- Oslo/MSU beta method
Relativistic **Virtual photon scattering** for PDR search in n-rich nuclei

high selectivity for dipole E1 excitation

Virtual photon excitation

and decay of GDR + PYGMY + E1 states

\[
\frac{d\sigma_C}{dE^*} = \sum_{\pi\lambda} \frac{1}{E^*} N_{\pi\lambda}^{(E^*)} \cdot \sigma_{\pi\lambda}^{\gamma}(E^*)
\]

To excite Dipole states one needs:
- High beam energy
- Large cross sections
- Large $\sigma_{GDR}/\sigma_{GQR}$ ratio

To Select projectile PDR one needs:
- High beam energy
- Large Doppler effects
 \(\rightarrow \) Background REDUCTION
- Good Z_{proj}/Z_{target} ratio
VPS-Coulex experiments

Euroball+BaF$_2$
- 400 MeV/u 68Ni + 197Au (May 2004)
- 600 MeV/u 68Ni + 197Au (April 2005)

AGATA*+LaBr$_3$:Ce
- 400 MeV/u 64Fe + 208Pb (October 2012)
- 430 MeV/u 62,64Fe + 197Au (April 2014)

DALI2+LaBr$_3$:Ce
- 280 MeV/u 70Ni + 197Au (October 2014)
- 280 MeV/u 72Ni + 197Au (future)

Talk of R. Avigo
* With half of HPGe material as EB and 5 times less intense beam

This presentation

VPS-Coulex experiments give important (complementary) informations on existence, position, shape and strenght of PDR
HECTOR⁺ & DALI2 @ RIKEN (Tokyo)
CAMPAIGN of 3* experiments in 2014

- Inelastic alpha scattering on $^{128/132}$Sn (T. Aumann,...)
- Inelastic alpha scattering + coulomb excitation on $^{20/22/24}$O (H. Baba, N. Nakatsuka,...)
- Coulomb excitation on 70Ni (O. Wieland,...)
RIBF setup in Riken laboratory allows to produce radioactive beams at relativistic energies and **select in flight (fragmentation)** the isotopes of interest (BigRips).

DALI2 coupled with LaBr3:Ce scintillators provide a very large angular coverage and also efficiency at high energies.

Zero degree Spectrometer allows to select reaction products outcoming from secondary target.

Experiment at RIKEN-RIBF

BIGGER Parameters:
- **238U Primary Beam -> 70Ni secondary Beam at 260AMeV**
 - @F3 48 kcps SECONDARY BEAM PRODUCED
 - @F7 30 kcps SECONDARY BEAM SELECTED with 40% PURITY 70Ni
 - @F11 27 kcps AFTER TARGET AND REGISTERED IN ZERODEGREE SPECTROMETER

→ 1.3*10^9 «good 70Ni» events recorded in 34 hours measurement
Experiment at Riken laboratory to measure PDR in ^{70}Ni with NaI (DALI) and LaBr$_3$:Ce detectors

Primary Beam ^{238}U with 82 GeV total kinetic energy

Gamma ray efficiency \rightarrow select HE gamma ray GS decay
Energy Calibration for High Energy Gammas

- Cover up to 25MeV in C.M. = 40MeV in Lab. @30 deg

Neutron capture gamma
- Ni = 8.9MeV
- Al = 7.7 MeV

15.1MeV from 12C(p,p') test experiment @ RCNP

& A.Giaz NIM A729(2013)910
linearity efficiency up to 22MeV (p,γ)
Background for LaBr$_3$:Ce / DALI2

H. Baba, N. Nakatsuka

- Internal activity of LaBr3 detector
- \(\gamma \)-ray from beam @ forward plastic scintillator
- \(\gamma \)-ray from beam @ target position
- \(\gamma \)-ray from beam @ target position
- \(\sigma = 0.4 \text{ns}!! \) will be even better
- Particles background from the target
Setup/Experiment

BIGRIPS

^{70}Ni

260 AMeV

ZDS

$^{70}\text{Ni}^*$

DALI2

γ-ray Yield cms

Backward angles \rightarrow target emission

Center angles

Target + Projectile

Forward angles

Projectile emission

LaBr$_3$:Ce

2$^+$

Gate on 2$^+$ State of ^{70}Ni

Preliminary

November 2014

Ground State

2$^+$ 1260 keV

Gate on 2$^+$ State of ^{70}Ni

Preliminary

6$^+ \rightarrow$ 4$^+$

4$^+ \rightarrow$ 2$^+$

Known Benchmark

To DETERMINE E1 strengths

Gold Target Background

E[keV]

E[keV]
High Energy gamma ray spectra

70Ni

Unresolved E1 strength below threshold

To Do:
- fix (low energy) tail of GDR, target contribution and background
- then unfold with response function

Preliminary
Summary and Status

- We have measured the E1 strength in ^{70}Ni neutron-rich nuclei around threshold
 - We have used DALI2+ large volume LaBr$_3$:Ce on thick gold target with ^{70}Ni beam @ 260AMeV
- Analysis is ongoing
 - Analysis meeting Milano 2015 Sep.21-25
 - Analysis meeting Darmstadt 2015 Okt.
 - Analysis meeting at Tokyo 2016
- Next nucleus ^{72}Ni (DALI2+Hector+),
Thank you and
Thanks to collaborators

- **U-Milano/INFN**
 - O. Wieland, R. Avigo, A. Bracco, F. Camera, S. Ceruti, G. Benzoni, N. Blasi, S. Brambilla, F.C.L. Crespi, S. Leoni, B. Million, A. Morales, L. Pellegrini, A. Giaz et al.,

- **TU Darmstadt**

- **Köln**
 - V. Derya

- **Peking**
 - C. Sidong

- **Tohoku**
 - T. Sumikama

- **Osaka**
 - A. Tamii, N. Aoi, J. Ong

- **VECC**
 - S. R. Banerjee

- **U-Huelva**
 - I. Martel

- **RIKEN**

- **Rikkyo-U**
 - Y. Shiga, K. Ieki

- **Kyoto-U**
 - N. Nakatsuka, T. Kawabata, T. Murakami

- **U-Tokyo**
 - S. Koyama, R. Taniuchi

- **CNS U-Tokyo**

- **TITech**

et al. ...