

Alexander Volya

Florida State University

Cluster-nucleon configuration interaction approach

Traditional shell model configuration m-scheme

Cluster configuration SU(3)-symmetry basis

- m-scheme and SU(3) basis
- Construction and classification of cluster configurations
- Center of mass and translational invariance
- Non-orthogonality and bosonic principle

Cluster configurations

Example: alpha decay with ℓ =0 from sd shell

21 way to make L=0 T=0 4-nucleon combination Each nucleon has 2 oscillator quanta, 8 quanta total In oscillator basis excitation quanta are conserved We model alpha as 4-nucleons on s-shell $(0s)^4$

Make single SU(3) operator with quantum numbers (8,0) $\Phi^{\eta}_{(8,0):\ell m}$

Cluster coefficient is known analytically $X_{n'\ell}^{\eta}$

$$\underbrace{ \begin{array}{c} \phi_{n\ell m}(1)\phi_{n\ell m}(2)\phi_{n\ell m}(3)\phi_{n\ell m}(4) \\ 4 \times 2 = 8 \text{ quanta} \\ \text{m-scheme state} \end{array}} \leftrightarrow \underbrace{ \begin{array}{c} \sum_{\eta} X_{n'\ell}^{\eta} \Phi_{n\ell m}(4) \\ \sum_{\eta} \sum_{\tau \in \mathcal{T}_{n'\ell}} \Phi_{\tau}(4) \\ \sum_{\eta} \sum_{\tau \in \mathcal{T}_{n'\ell}} \Phi_{\tau}(4) \\ \sum_{\tau \in \mathcal{T}_{n'\ell}} \Phi_{\tau}(4) \\$$

$$X_{n'\ell}^{\eta} \Phi_{(8,0):\ell m}^{\eta} = \left(\underbrace{\phi_{n'\ell'm'}(\mathbf{R}_{\alpha})}_{8 \text{ quanta}} \underbrace{\Psi_{\alpha}'}_{0 \text{ quanta}} \right)$$
8) symmetry state

Methods

- -Direct diagonalization Casimir operators of SU(3), J^2 , $T^2 \dots$
- Coupling and U(N) Clebsh-Gordan coefficients (via diagonalization)
- Casimir projection techniques. Generators of algebra.

Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).

M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).

O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

Translational invariance

Traditional Cluster Spectroscopic Characteristics

Traditional "old" spectroscopic factors

$$arphi_{\ell}(
ho) = \sum_{n} \langle \phi_{n\ell} | arphi_{\ell}
angle \, \phi_{n\ell}(
ho)$$
 Expand radial motion in HO wave functions
 $\mathcal{S}_{\ell}^{(\mathrm{old})} = \langle arphi_{\ell} | arphi_{\ell}
angle = \int
ho^2 d
ho \, |arphi_{\ell}(
ho)|^2 = \sum_{n} |\langle \phi_{n\ell} | arphi_{\ell}
angle|^2$

Bosonic nature of 4-nucleon operators non-orgothogonality

If Φ^{\dagger} is thought of as being a boson then $\Phi \Phi^{\dagger} = 1 + N_b$

$$|\Psi_D\rangle = |\Phi\rangle \quad \langle \Phi_D | \hat{\Phi} \hat{\Phi}^{\dagger} | \Psi_D \rangle = \langle 0 | \hat{\Phi} \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Phi}^{\dagger} | 0 \rangle = 2$$
$$L = S = T = 0$$

Φ	Ψ_P	$\left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D ight ^2$	$\langle 0 \hat{\Phi}\hat{\Phi}\hat{\Phi}^{\dagger}\hat{\Phi}^{\dagger} 0 angle$	
$(p)^4 (4,0)$	$(p)^8 (0,4)$	1.42222*	1.42222	
$(sd)^4 (8,0)$	$(sd)^8 (8,4)$	0.487903	1.20213	
$(fp)^4 (12,0)$	$(fp)^8 (16,4)$	0.292411	1.41503	
$(sdg)^4 (16,0)$	$(sdg)^8 (24,4)$	0.209525	1.5278	

* For p-shell the result is known analytically 64/45

Bosonic nature of 4-nucleon operators non-orgothogonality

If Φ^{\dagger} is thought of as being a boson then $\Phi\Phi^{\dagger} = 1 + N_b$

$$|\Psi_D\rangle = |\Phi\rangle \quad \langle \Phi_D | \hat{\Phi} \hat{\Phi}^{\dagger} | \Psi_D \rangle = \langle 0 | \hat{\Phi} \hat{\Phi} \hat{\Phi}^{\dagger} \hat{\Phi}^{\dagger} | 0 \rangle = 2$$
$$L = S = T = 0$$

Φ	Ψ_P	$\left \langle\Psi_P \hat{\Phi}^\dagger \Psi_D ight ^2$	$\langle 0 \hat{\Phi}\hat{\Phi}\hat{\Phi}^{\dagger}\hat{\Phi}^{\dagger} 0 angle$
$(p)^4 (4,0)$	$(p)^8 (0,4)$	1.42222^{\star}	1.42222
$(sd)^4 (8,0)$	$(sd)^8 (8,4)$	0.487903	1.20213
$(fp)^4 (12,0)$	$(fp)^8 (16,4)$	0.292411	1.41503
$(sdg)^4 (16,0)$	$(sdg)^8 (24,4)$	0.209525	1.5278

* For p-shell the result is known analytically 64/45

Effective operators (alphas) are not ideal bosons Cluster configurations are not orthogonal and not normalized

Orthogonality condition model, new SF

- Non-orthogonal set of channels (over-complete set of configurations)
- Pauli exclusion principle
- Matching procedure, asymptotic normalization, connection to observables
- No agreement with experiment on absolute scale

Resonating group method

$$\hat{\mathcal{H}}_{\ell} f_{\ell}(\rho) = E \hat{\mathcal{N}}_{\ell} f_{\ell}(\rho) \qquad \hat{\mathcal{N}}_{\ell}^{-1/2} \hat{\mathcal{H}}_{\ell} \hat{\mathcal{N}}_{\ell}^{-1/2} F_{\ell}(\rho) = E F_{\ell}(\rho)$$

New spectroscopic factor

$$\psi_{\ell}(\rho) \equiv \hat{\mathcal{N}}_{\ell}^{-1/2} \varphi_{\ell}(\rho)$$

$$S_{\ell}^{(\text{new})} \equiv \langle \psi_{\ell} | \psi_{\ell} \rangle = \int \rho^2 d\rho \left| \psi_{\ell}(\rho) \right|^2$$

Sum of all new SF from all parent states to a given final state equals to the number of channels

R. Id Betan and W. Nazarewicz Phys. Rev. C 86, 034338 (2012)

- S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699–742 (2007).
- R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 362.
- T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75-85 (1976).
- H. Feschbach et al. Ann. Phys. 41 (1967) 230 286

Alpha clustering in sd-shell nuclei

$A_P - A_D$	$S_0^{(\exp)}$	$S_0^{(\mathrm{exp})}$	$S_0^{(\exp)}$	$\mathcal{S}^{(ext{old})}_{0}$	$\mathcal{S}_0^{(\mathrm{old})}$	$S_0^{(\mathrm{new})}$
	[1]	[2]	[3]	[4]	this work	
20 Ne- 16 O	1.0	0.54	1	0.18	0.173	0.755
22 Ne- 18 O			0.37	0.099	0.085	0.481
²⁴ Mg- ²⁰ Ne	0.76	0.42	0.66	0.11	0.091	0.411
26 Mg- 22 Ne			0.20	0.077	0.068	0.439
28 Si- 24 Mg	0.37	0.20	0.33	0.076	0.080	0.526
30 Si- 26 Mg			0.55	0.067	0.061	0.555
$^{32}\text{S}-^{28}\text{Si}$	1.05	0.55	0.45	0.090	0.082	0.911
³⁴ S- ³⁰ Si				0.065	0.062	0.974
$^{36}{ m Ar}{ m -}^{32}{ m S}$				0.070	0.061	0.986
38 Ar- 34 S			1.30	0.034	0.030	0.997
⁴⁰ Ca- ³⁶ Ar	1.56	0.86	1.18	0.043	0.037	1

USDB interaction [5] (8,0) configuration

- Old SF are small
- Old SF decrease with A

[1] T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 23, 576(R) (1981).

[2] T. Carey, P. Roos, N. Chant, A. Nadasen, and H. L. Chen, Phys. Rev. C 29, 1273 (1984).

[3] N. Anantaraman and et al., Phys. Rev. Lett. 35, 1131 (1975).

[4] W. Chung, J. van Hienen, B. H. Wildenthal, and C. L. Bennett, Phys. Lett. B 79, 381 (1978).

[5] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006)

Alpha cluster spectroscopic factors in ²⁴Mg

$$|\Phi_{(8,0):L}\rangle = |(sd)^4[4](8,0), : LS = T = 0\rangle$$

°21

10 11 12 13

Clustering in light nuclei $\alpha + \alpha + \alpha$ 3.0 4+ 11.4 2^{+} 3<u>/2</u>⁻ -26.33 5 16.3 6^{+} $3/2^{-}$ 1.8 0^{+} 7.7 -27.40 0^{+} -56.5 -28.30 ⁵₂Li ⁵₃He 0^+ -29.268 ⁴₂He ⁸₄Be ⁶₄He 2^{+} 4.4 $\alpha + p$ 6 5 4^{+} 10.4 $\alpha + n$ 3.4 2^{+} $\alpha + \alpha$ $\alpha + n + n$ 2^{+} 6.9 0^{+} -------92.2 0^{+} 0^{+} 6.0 ${}^{12}_{6}C$ -65.0 $^{10}_{6}Be$ • $\alpha {+}^{12}\mathrm{C}$ 0 了 0^{+} $\alpha + n + n + \alpha$ -127.6 ¹⁶₈O

 $^{-160.6}$ $^{20}_{12}$ Ne

Y. Utsuno and S. Chiba, Phys. Rev. C83 021301(R) (2011)

Clustering in light nuclei $\alpha + \alpha + \alpha$ 3.0 4+ 11.4 2^{+} 3<u>/2</u>⁻ -26.33 5 16.3 6^{+} $3/2^{-}$ 1.8 0^{+} 7.7 -27.40 0^{+} -56.5 -28.30 ⁵₂Li ⁵₃He 0^+ -29.268 ⁴₂He ${}^{8}_{4}\text{Be}$ ⁶₄He 2^{+} 4.4 $\alpha + p$ 6 5 4^{+} 10.4 $\alpha + n$ 3.4 2^{+} $\alpha + \alpha$ $\alpha + n + n$ 2^{+} 6.9 0^{+} -------92.2 0^{+} 0^{+} 6.0 ${}^{12}_{6}C$ -65.0 $^{10}_{6}Be$ • $\alpha {+}^{12}\mathrm{C}$ 0 了 0^{+} $\alpha + n + n + \alpha$ -127.6 ¹⁶₈O

Detailed shell model analysis of ¹⁰Be ($^{10}Be \rightarrow ^{6}He + \alpha$) and experimental data

J^{π}_{s}	S_{l}	E_x^{th}	Γ^{th}_{α}	\mathbf{E}_{x}^{exp}	Γ^{exp}_{α}	$\theta_{\alpha}^2(r_1)$	$\theta_{\alpha}^2(r_2)$
0 ⁺ ₁	0.686	0.000		0			
2^{+}_{1}	0.563	3.330		3.368			
0^{+}_{2}	0.095	4.244		6.197			
2^{+}_{2}	0.049	5.741		5.958			
2^{+}_{3}	0.052	6.123		(a)			
1^{-}_{1}	0.027	6.290		5.96			
3^{-}_{1}	0.098	6.926		7.371		$0.42^{(b,c)}$	
2_{4}^{+}	0.116	7.650	3.10-4	7.542	5.10-4	$1.1^{(b,c)}$	0.19
03	0.023	8.068	17				
4+	0.049	8.933	4.7				
1^{-}_{2}	0.045	9.755	180	10.57			
3^{-}_{2}	0.046	9.897	61				
2_{5}^{+}	0.027	10.819	50	0.56	141 ^(e)		0.074
2_{6}^{+}	0.023	11.295	43	9.50			0.074
0_{ϵ}^{+}	0.153	11.403	800				
4^{+}_{2}	0.370	11.426	180	10.15	185 ^(c)	$1.5^{(c)}$	0.38
5-	0.148	11.440	150	11.93	200		0.20
1_{5}^{-}	0.013	12.650	76				
6 ⁺ ₁	0.013	13.134	24				
5^{-}_{2}	0.128	13.545	250	$13.54^{(c,f)}$	99	1.0 ^(c)	0.051
2^{+}_{10}	0.040	13.789	240				
43	0.011	13.992	20	11 76	121		0.066
4+	0.022	14.233	40	11.70			0.000
0_{6}^{+}	0.018	14.252	120				
3_{7}^{-}	0.014	14.468	77				
5-3	0.059	14.992	180				
4_{5}^{+}	0.161	15.071	800	$15.3(6^{-})^{(d)}$	800 ^(e)		0.16

(a) The existence of this state is suggested by the existence of 8.070 MeV isobaric analog state in ¹⁰B, see analogous discussion in Ref. [20];
 (b) Widths deduced from the isobaric analog channel

- $^{10}B \rightarrow ^{6}Li(0^{+}) + \alpha [21, 22];$
- (c) results from Ref. [22];
- ^(d) results from Ref. [23].
- ^(e) Total width Γ^{tot} .

^(f) In Ref. [22] the state was assigned spin-parity 6⁺.

$r_1 = 4.77$ $r_2 = 6.0$ fm

[21]A. N. Kuchera et al.: Phys. Rev. C 84 (2011) 054615.
[22] A. N. Kuchera <u>http://diginole.lib.fsu.edu/etd/8585/</u>
[23] D. R. Tilley et al.: Nucl. Phys. A 745 (2004) 155.

No-core shell model studies with JISP16 Hamiltonian, clustering in ${}^{10}\text{Be}{\rightarrow}\,{}^{6}\text{He+}\alpha$

	psd	N _{max} =0	N _{max} =2	N _{max} =4	N _{max} =4	Ехр
SF	0.686	0.713	0.622	0.609	0.687	0.55 [2]
operators	3	1	7	7	20	
Radius [fm]		3.4	4.0	4.0	4.5	4.7-6

$$r \approx \sqrt{\frac{\hbar}{m\omega}} \left(n_{\max} + \frac{3}{2} \right) \quad \hbar\omega = 20 \text{ MeV}$$

In order to get to r=6 fm, n_{max}=16 is needed, relative to core this is N_{max}=10, 14

[1] P. Maris and J. Vary, Int. J. Mod. Phys. E 22, 1330016 (2013); J. Vary private communication[2] W. Oelert, Few-body Problems, Volume 3; Volume 1985 By E. Hadjimichael, W. Oelert, see page 252

Acknowledgements:

Thanks to: K. Kravvaris, Yu. Tchuvil'sky, J. Vary, T Dytrych, G. Rogachev, V. Goldberg, V. Zelevinsky Funding: U.S. DOE contract DE-SC0009883.

Publications:

A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015); J. Phys. Conf. Ser. 569, 012054 (2014); (World Scientific, 2014), p. 215.
M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson, K. W. Kemper, Y. M. Tchuvil'sky, and A. Volya, Phys. Rev. C 90, 024327 (2014).