Measurements of the isoscalar monopole response in the neutron-rich nucleus ^{68}Ni

Introduction
Motivations
Setup : the active target MAYA
Results
Conclusion and outlook

Marine VANDEBROUCK
Present address marine.vandebrouck@ganil.fr
What are giant resonances?

<table>
<thead>
<tr>
<th>Electric GR</th>
<th>T = 0</th>
<th>T = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>isoscalar</td>
<td>isovectorial</td>
</tr>
<tr>
<td>$L = 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monopole (GMR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dipole (GDR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L = 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadrupole (GQR)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurements of the isoscalar monopole response in the neutron-rich nucleus ^{68}Ni

Introduction
Motivations
Setup: the active target MAYA
Results
Conclusion and outlook
Motivations Nuclear matter incompressibility and ISGMR

Asymmetry
\[\delta = (N-Z)/A \]

Microscopic calculation

- Centroid of the ISGMR \(E_{\text{ISGMR}} \)
 \[E_{\text{ISGMR}} = \sqrt{\frac{\hbar^2 K_A}{m \langle r^2 \rangle}} \]

- Determination of the compression modulus of the nucleus \(K_A \)
- Liquid drop development
- Determination of the nuclear matter incompressibility \(K_\infty \)

Status

\(K_\infty \) has been constrained for symmetric and asymmetric matter. To gain a better knowledge of \(K_\infty \), we need studies along isotopic chains, including exotic nuclei.

Motivations Nuclear matter incompressibility and ISGMR

In supernovae bounce

Density profile at bounce

- $K_\infty = 180$ MeV
- $K_\infty = 220$ MeV
- $K_\infty = 375$ MeV

In neutron stars

Gravitational Mass $M_G [M_\odot]$ vs Radius $R [\text{km}]$

- J1614-2230
- TM1
- TMA
- FSUgold
- NL3
- DD2
- LS180
- LS220
- STOS
- Steiner et al.

A. Fantina PhD (2010) IPNO-IAA

M. Hempel ITP Franckfurt
Motivations Nuclear matter incompressibility and ISGMR

Does ISGMR really related to K_∞?

- $K_\infty = 220 \text{ MeV} \pm 30 \text{ MeV}$
- No single functional to reproduce K_∞ calculated from $E^{*}_{\text{GMR}}(\text{Pb})$ and K_∞ calculated from $E^{*}_{\text{GMR}}(\text{Sn})$
- $K_\infty \leftrightarrow$ asymmetry $\delta = (N-Z)/A$

- Surface: 2/3 of nucleons in ^{208}Pb
- Saturation density area may not be the most probed

E^{*}_{GMR} provides $K(\rho)$ and not K_∞

Need measurement of E^{*}_{GMR} along isotopic

Motivations Prediction of a soft monopole mode

Prediction of the monopole strength in Ni isotopic

\[\text{Prediction of a low energy mode} \]

\[\text{RQRPA} \]

\[\text{Soft GMR} \]

\[\text{E. Khan, N. Paar and D. Vretenar, Phys. Rev. C 84, 051301 (2011)} \]
Motivations Prediction of a soft monopole mode

Prediction of the monopole strength in Ni isotopic

Prediction of a low energy mode

RPA with exact treatment of continuum

Motivations Status of the GR measurement in unstable nuclei

- Understand these excitation modes from stable to exotic nuclei: the IVGDR/PDR has been measured in ^{68}Ni, neutron rich Oxygen and Tin isotopes at GSI, in ^{26}Ne at Riken...
- 1st measurement of the ISGMR and ISGQR in unstable nuclei $^{56}\text{Ni}:^{56}\text{Ni}(d,d')^{56}\text{Ni}^*$

Study of the ISGMR and ISGQR in a neutron rich Ni: ^{68}Ni

Continue the study of the Ni isotopic chain

Study of the ISGMR and ISGQR using inelastic scattering $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ and $^{68}\text{Ni}(d,d')^{68}\text{Ni}^*$

Experiment at GANIL
Measurements of the isoscalar monopole response in the neutron-rich nucleus ^{68}Ni
We have to consider:
- Inverse kinematics with a low recoiling energy
- Low production rate

Use of an Active Target:
- low detection threshold
- thick target

Study of the ISGMR and in ISGQR using inelastic scattering $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ and $^{68}\text{Ni}(d,d')^{68}\text{Ni}^*$

Challenge:
Measurement at small angles and low energies
Setup: the active target MAYA Principle

The active target MAYA

1. The scattered deuteron or \(\alpha \) ionizes the gas
2. The electrons drift towards the Frisch grid
3. Amplification on the wires
4. Signal on each pad proportionnally to the amount of electrons collected on the wire above

Which information are stored?
- Time on each wire
- Charge induced on each pad

The experiment was performed on LISE beam line
Production of ^{68}Ni beam from fragmentation of ^{70}Zn

Production of ^{68}Ni at 50 A.MeV

Intensity: 10^4 pps

Purity: 75%

Experimental setup

^{68}Ni 50MeV/A
Measurements of the isoscalar monopole response in the neutron-rich nucleus ^{68}Ni

Introduction
Motivations
Setup: the active target MAYA
Results
Conclusion and outlook
Results Tracking reconstruction

T. Roger et al., Nucl. Instrum. Meth. 638, 134 (2011)
Results Efficiency

- Geometric efficiency using ACTARSim code (based on Geant4 and ROOT)
- Each simulated event is reconstructed with the code for physical events

Geometric and reconstruction efficiency

![Efficiency plots](image)

\[^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^* \]

\[^{68}\text{Ni}(d,d')^{68}\text{Ni}^* \]
Results $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ Excitation energy spectra

Results 68Ni(α,α$'$)68Ni* Excitation energy spectra

<table>
<thead>
<tr>
<th></th>
<th>Centroid (MeV)</th>
<th>FWHM (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance 1</td>
<td>12.9±1.0</td>
<td>1.2±0.4</td>
</tr>
<tr>
<td>Resonance 2</td>
<td>15.9±1.3</td>
<td>2.3±1.0</td>
</tr>
<tr>
<td>Resonance 3</td>
<td>21.1±1.9</td>
<td>1.3±1.0</td>
</tr>
</tbody>
</table>
Results $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ Angular distribution

Results $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ Multipole Decomposition Analysis

\[
\frac{d\sigma}{d\Omega}_{\text{exp}}(\theta_{CM}, E^*) = \sum_{L=0}^{2} S_L(E^*) \left. \frac{d\sigma_L}{d\Omega} \right|_{\text{theo}}(\theta_{CM}) + \left. \frac{d\sigma_{\text{fond}}}{d\Omega} \right|_{\text{theo}}(\theta_{CM})
\]

Results $^{68}\text{Ni}(\alpha,\alpha')^{68}\text{Ni}^*$ Multipole Decomposition Analysis

\[
\frac{d\sigma}{d\Omega}_{\text{exp}}(\theta_{CM}, E^*) = \sum_{L=0}^{2} S_L(E^*) \frac{d\sigma_L}{d\Omega}_{\text{theo}}(\theta_{CM}) + \frac{d\sigma_{\text{fond}}}{d\Omega}(\theta_{CM})
\]

Résultats

- **L = 0**: fragmentation of the ISGMR with a shoulder at 21 MeV
 - increase of the strength at 13 MeV
- **L = 1**: increase of the strength at 21 MeV and below 15 MeV
- **L = 2**: concentration of the strength around 16 MeV
- From 23 MeV other multipolarities…

Results $^{68}\text{Ni}(d,d')^{68}\text{Ni}^*$

Fitting method

Multipole Decomposition Analysis (MDA)

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Centroid (MeV)</th>
<th>FWHM (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance 1</td>
<td>12.7±0.3</td>
<td>2.2±0.5</td>
</tr>
<tr>
<td>Resonance 2</td>
<td>16.5±2.0</td>
<td>4.3±2.6</td>
</tr>
<tr>
<td>Resonance 3</td>
<td>20.9±1.0</td>
<td>4.4±0.5</td>
</tr>
</tbody>
</table>

Results Synthesis

Soft ISGMR

Mixed with ISGDR
- 12.9 ± 1.0 MeV in (α,α')
- 12.7 ± 0.3 MeV in (d,d')

ISGQR
- 15.7 ± 1.0 MeV in (α,α')
- 16.5 ± 2.0 MeV in (d,d')

ISGMR

Fragmented strength with a shoulder at:
- 21.1 ± 1.9 MeV in (α,α')
- 20.9 ± 1.0 MeV in (d,d')
Measurements of the isoscalar monopole response in the neutron-rich nucleus ^{68}Ni

Introduction
Motivations
Setup: the active target MAYA
Results
Conclusion and outlook
Conclusion and outlook

- First measurement of the isoscalar giant resonances in neutron-rich nucleus (68Ni)
 68Ni(α,α)68Ni* and 68Ni(d,d)68Ni
 ➔ Indication new modes
 ➔ Active targets suited for ISGR studies

- Some difficulties…
 ➔ Limited Resolution
 ➔ Analysis considering fragmentation of the strength
Conclusion and outlook

- New detection systems
 - Next generation of active target like ACTAR (T. Roger talk)

- Storage ring + gas-jet target + detector telescopes (N. Kalantar talk)

- Isoscalar monopole strength in heavier exotic nuclei (S. Ota talk)
Collaboration

1IPN Orsay, Université Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex, France
2LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 CAEN Cedex, France
3RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
4Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
5GANIL, CEA/DSM-CNRS/IN2P3, 14076 Caen, France
6Dipartimento de Física Università degli Studi di Milano and INFN, Sezione di Milano, 20133 Milano, Italy
7Physics Department, University of Notre-Dame, Notre Dame, Indiana 46556, USA
8KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
9National Centre for Nuclear Research ul. Andrzeja Soltana 7, 05-400 Otwock, Poland
10NSCL, Michigan State University, East Lansing, Michigan 48824-1321, USA
11IKS, K.U. Leuven, B-3001 Leuven, Belgium
12CEA-Saclay, DSM, F-91191 Gif sur Yvette Cedex, France