

Simone Valdré

Università degli studi di Firenze and INFN — Sezione di Firenze

for the NUCL-EX collaboration

Decay features of medium mass nuclei at high excitation and spins

Comex5, Kraków

September 16th, 2015

Introc	luction
	action

Introduction

Reaction parameters

$\mathit{E}_{ m b}$ [MeV]	$E_{ m cm}$ [MeV]	$arepsilon^*$ [MeV/u]	$I_{ m gr}$ [\hbar]	$I_{B_{\mathrm{f}}=0}$ [\hbar]
300	135	1.4	91	79
450	203	2.2	124	79
600	271	3.0	149	79

Introduction

Why ⁸⁸Mo?

- large fission barrier up to high spins
- mass region not well explored in literature
- GDR study performed here in Krakow
 - Michal Ciemała talk
 - M. Ciemała et al., Phys. Rev. C 91,054313 (2015)

Introduction

Why ⁸⁸Mo?

- large fission barrier up to high spins
- mass region not well explored in literature
- GDR study performed here in Krakow
 - Michal Ciemała talk
 - M. Ciemała et al., Phys. Rev. C 91,054313 (2015)
- This talk will be focused on:
 - light charged particles emission in fusion-evaporation channel
 - check of statistical model parameters
 - fusion-evaporation and fusion-fission cross sections
 - S. Valdré et al., submitted to Phys. Rev. C. arXiv:1509.03184

Conclusions

Experimental apparatus

Experimental apparatus

The experiment

- performed at Laboratori Nazionali di Legnaro (LNL)
- beam from ALPI linac
- Main detectors: GARFIELD and Hector

Experimental apparatus

Experimental apparatus

GARFIELD

- $\Delta E(gas)-E(CsI(TI))$ telescope array
- cylindrical symmetry; divided into 24 azimuthal sectors
- detects LCPs and IMFs at $29^{\circ} < \theta < 85^{\circ}$

Experimental apparatus

Experimental apparatus

Hector

- 8 BaF₂ scintillators from Hector setup
- detect high energy γ -rays ($E_\gamma\gtrsim$ 4 MeV)
- not considered in the present work

Experimental apparatus

Experimental apparatus

Phoswiches

- \bullet 48 scintillator telescopes from $\rm FIASCO$ experiment
- identify evaporation residues and fission fragments
- at forward angles (5° $< \theta < 15^{\circ}$)

Conclusions

Experimental apparatus

Phoswiches

- \bullet 48 scintillator telescopes from $\rm FIASCO$ experiment
- identify evaporation residues and fission fragments
- at forward angles (5° $< \theta < 15^{\circ}$)

Evaporation residue selection

Condition for the selection of fusion-evaporation events

1 particle in dotted areal gate in any phoswich no other particles in continuous areal gates

Statistical model of Compound Nucleus decay

The GEMINI++ statistical model code

- is a widely used statistical model code
- adopts a default set of parameters obtained by fitting data from several previous experiments
 - parameters are tuned for heavy nuclei (A \gtrsim 150)
 - there aren't many experimental data to fix parameters for medium-light nuclei
- We compared experimental data with GEMINI++ varying many parameters:
 - level density
 - Coulomb barrier distribution
 - yrast energy parametrization
 - etc...

From 4π to experimental geometry and vice-versa

Geometry and efficiency filter

- directly compare experimental spectra with filtered simulations
- correct experimental yields for the apparatus efficiency

Comparison between experimental data and GEMINI++

Comparison between experimental data and GEMINI++

- Spectra are scaled to the same integral to compare the shape
- Very good agreement for protons
- Simulated α spectra have a correct slope, but lower energy

Improvement of the agreement for α -particles

Only adopting **RLDM yrast and fission barrier** (instead of linearized Sierk) the agreement improves

Comparison between experimental data and GEMINI++

proton energy spectra at 300 MeV

α -particle energy spectra at 300 MeV

Comparison between experimental data and GEMINI++

proton energy spectra at 450 MeV

α -particle energy spectra at 450 MeV

Comparison between experimental data and GEMINI++

proton energy spectra at 600 MeV

α -particle energy spectra at 600 MeV

Comparison between experimental data and GEMINI++

proton angular distributions

$\alpha\text{-particle}$ angular distributions

Comparison between experimental data and GEMINI++

Cross section estimations

Rutherford cross-section normalization

It's possible to measure cross sections via a normalization obtained from a plastic scintillator at 2° that measures elastic scattering

P. Eudes et al., Europhys. Lett. 104, 22001 (2013)

Cross section estimations

Rutherford cross-section normalization

It's possible to measure cross sections via a normalization obtained from a plastic scintillator at 2° that measures elastic scattering

 $\sigma_{
m F}(ext{450 MeV}) = 0.81(6)\,{
m b}$

 $\sigma_{
m F}(600\,{
m MeV})=0.88(16)\,{
m b}$

Introduction	Experimental apparatus	Statistical model	Results	Conclusions
Conclusions	5			

• We measured the reaction ${}^{48}\text{Ti} + {}^{40}\text{Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A \sim 90$

Introduction	Experimental apparatus	Statistical model	Results	Conclusions
Conclusions	5			

- We measured the reaction ${\rm ^{48}Ti+^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)

Introduction	Experimental apparatus	Statistical model	Results	Conclusions
Conclusions	5			

- We measured the reaction ${
 m ^{48}Ti+^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim 90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)
- We found an α -particle yield excess, in particular at forward angles and increasing with energy.

Introduction	Experimental apparatus	Statistical model	Results	Conclusions
Conclusions	5			

- We measured the reaction ${
 m ^{48}Ti+^{40}Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A\sim 90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)
- We found an α -particle yield excess, in particular at forward angles and increasing with energy.
- It's difficult to improve the agreement by tuning the model parameters; indication of the onset of minor pre-equilibrium emission or contamination from other processes.

Introduction	Experimental apparatus	Statistical model	Results	Conclusions
Conclusions	5			

- We measured the reaction ${}^{48}\text{Ti} + {}^{40}\text{Ca}$ at 300, 450 and 600 MeV to study the decay of nuclei of masses in the region $A \sim 90$
- GEMINI++ statistical model code well describes the decay in the evaporative channel at least in GARFIELD ($\theta > 30^{\circ}$)
- We found an α -particle yield excess, in particular at forward angles and increasing with energy.
- It's difficult to improve the agreement by tuning the model parameters; indication of the onset of minor pre-equilibrium emission or contamination from other processes.
- We gave an estimation of fusion-evaporation and total fusion cross section. Expecially at higher energies, there is room for DIC and quasi-fission decays.

The 5th international conference on COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS

S. Valdré,^{1,2,*} S. Piantelli,² G. Casini,² S. Barlini,^{1,2} S. Carboni,^{1,2} M. Ciemała,³ M. Kmiecik,³ A. Maj,³ K. Mazurek,³ M. Cinausero,⁴ F. Gramegna,⁴ V.L. Kravchuk,⁶ L. Morelli,⁶ T. Marchi,⁴ G. Baiocco,⁷ L. Bardelli,^{1,2} P. Bednarczyk,³ G. Benzoni,⁸ M. Bini,^{1,2} N. Blasi,⁸ A. Bracco,^{9,8} S. Brambilla,⁸ M. Bruno,⁶ F. Camera,^{9,8} A. Chbihi,¹⁰ A. Corsi,^{9,8} F.C.L. Crespi,^{9,8} M. D'Agostino,⁶ M. Degerlier,¹¹ D. Fabris,¹² B. Fornal,³ A. Giaz,^{9,8} M. Krzysiek,³ S. Leoni,^{9,8} M. Matejska-Minda,^{3,13} I. Mazumdar,¹⁴ W. Męczyński,³ B. Million,⁸ D. Montanari,^{9,8} S. Myalski,³ R. Nicolni,^{9,8} A. Olmi,² G. Pasquali,^{1,2} G. Prete,⁴ O.J. Roberts,¹⁵ J. Styczeń,³ B. Szpak,³ B. Wasilewska,³ O. Wieland,⁸ J.P. Wieleczko,¹⁰ and M. Ziębliński³

¹ Dipartimento di Fisica, Università di Firenze, Italy
 ² INFN sezione di Firenze, I-50019 Sesto Fiorentino, Italy
 ³ Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Kraków, Poland
 ⁴ INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
 ⁵ National Research Centre "Kurchatov Institute", 123182 Moscow, Russia
 ⁶ Dipartimento di Fisica, Università di Bolgan and INFN sezione di Bolgana, I-40127 Bologna, Italy
 ⁶ Dipartimento di Fisica, Università di Pavia, Italy and INFN sezione di Pavia, I-27100 Pavia, Italy
 ⁶ Dipartimento di Fisica, Università di Malano, -120133 Milano, Italy
 ⁹ Dipartimento di Fisica, Università di Milano, 1-20133 Milano, Italy
 ⁹ Dipartimento di Fisica, Università di Malano, 1-20133 Milano, Italy
 ⁹ Dipartimento di Fisica, Università di Malano, 1-20133 Milano, Italy
 ¹⁰ Grand Accélérateur National d'Ions Lourds (GANIL), BP 55027, F-14076 Caen Cedex 5, France
 ¹¹ Nevschir Haci Bekias Veli University di Warsaw, D2-093 Warsaw, Poland
 ¹² Theny Sezione di Pavone, Padova, Italy
 ¹³ Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland
 ¹⁴ Tata Institute of Fundamental Research, 400005 Munoi, India
 ¹⁶ University of York, Heslington, YOIO 5DD York, UK

Thanks for your attention!