Photodisintegration of ⁹Be through the ¹/₂+ state and pygmy dipole resonance

H. Utsunomiya¹, S. Katayama¹, I. Gheorghe^{1,2}, S. Imai¹, H. Yamaguchi³, D. Kahl³,
Y. Sakaguchi³, T. Shima⁴, K. Takahisa⁴, S. Miyamoto⁵
1 Konan University, Kobe, Japan
2 Extreme Light Infrastructure Nuclear Physics, Bucharest, Romania
3 Center for Nuclear Science, University of Tokyo, Saitama, Japan
4 Research Center for Nuclear Study, Osaka University, Osaka, Japan
5 Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Hyogo, Japan

Outline

1. Purpose

2. Experiment

3. Results

Purpose

Borromean system

1.

2. Nucleosynthesis of ⁹Be

 $\alpha \alpha \rightleftharpoons {}^{8}\text{Be}(n,\gamma){}^{9}\text{Be}(\alpha,n){}^{12}\text{C} ---$

H. Utsunomiya et al., PRC 63 (2001)

C.W. Arnold et al., PRC 85 (2012) $n + \alpha + \alpha$.81 T = 1/21.9 11.2015 .28 (3/2 e-p c 0.02 8 4. N a ture of PDR 7.94 (1/2-) 0.10 6.76 7/2 0.50 4.70 (3/2)* c° 3 0 5 034 3.0 2.46 24 ⁵He + α 1.69 .5737 6655 1/2 664 THRESH ⁸Be + n ⁴He+r J[#]=3/2⁻ T=1/2 °Be 3. Nature of the $\frac{1}{2}$ state

Resonance or Virtual state?

Poster I-7 Seitarou Karayama

Details of the experiment

Nd:YVO₄ laser (INAZUMA) for high-energy γ -ray beams Q-switch, λ =1064nm, 35W

CO₂ laser for low-energy γ -ray beams CW, λ =10.5915 μ m ± 3Å (grating fixed), 10W

γ-ray Profile Monitor Detectors

HPGe detector

LaBr₃(Ce) detector

Low-energy γ -ray beams

High-energy γ-ray beams

3.5" x 4.0"

Response functions of a Ge detector

Energy spectrum of a γ -ray beam

Response function of a LaBr₃(Ce) detector

9Be Target

20mm (dia.) x 40mm (length)

γ-ray Flux Monitor

8.0" x 12.0" Nal(Tl), 100% efficiency

Number of incident γ -rays

Poisson-fitting method for multi-photon spectra T. Kondo et al., NIM A 659, 462 (2011)

$D(\gamma,n)p$ cross sections

⁹Be(γ,n) cross sections

1/2+ state data

Ellergy (mev

Breit-Wigner fit

$$\sigma(E:I \to J) = \pi \frac{2J+1}{2(2I+1)} \left(\frac{\hbar c}{E}\right)^2 \frac{\Gamma_{\gamma} \Gamma_n}{\left(E - E_R\right)^2 + \left(\Gamma/2\right)^2}$$

 $B(E1) = 0.110[e^2 \text{ fm}^2] E_R = 1.728 \text{ MeV}$

Two-body kinematics

$$E_n = \frac{8}{9}(E_{\gamma} - 1.6653)$$

Average neuron energy

Comparisons

1/2+ state	Present	Arnold (2012)	Utsunomiya (2001) Sumiyoshi (2002)
Peak cross section	1.35mb	1.7mb	1.3mb
Resonance energy	1.728 MeV	1.713 MeV	1.748 MeV 1.735 MeV
B(E1)	0.110 e ² fm ²	0.136 e ² fm ²	0.107 e ² fm ² 0.104 e ² fm ²

S-matrix for n-⁸Be scattering

PDR Data

 $\sigma_{PDR}(E)dE = 11.3 MeV \cdot mb$

GDR: Lorentzian function PDR: Gaussian function 5/2⁺ state: Breit-Wigner

Cluster dipole sum rule

Y. Alhassid, M. Gai, G.F. Bertsch, Phys. Rev. Lett. 49, 1482 (1982)
H. Sagawa, M. Homma, Phys. Lett. B 251, 17 (1990)
R. De Diego, E. Garrido, A.S. Jensen, D.V. Fedorov, Phys. Rev. C 77, 024001 (2008)

Comparisons

Experimental result ⁹Be

$$\int \sigma_{PDR}(E) dE = 11.3 MeV \cdot mb \quad Fit$$

TRK 133.3 MeV mb

Cluster dipole sum rule ⁸Be+n 13.3 MeV mb $\alpha + \alpha + n$ 13.3 MeV mb

Summary

- 1. The $\frac{1}{2}$ + state cross section was newly measured at the NewSUBARU facility. The peak cross section ~ 1.35 mb is smaller than that (1.7 mb) of Arnold et al. (2012) and is rather consistent with the previous 2001 data.
 - 2. $\underline{\sigma(E_{\gamma}) \sim 0} \quad S_{n+\alpha+\alpha} < E_{\gamma} < S_{n+8Be}$
 - 3. The average neutron energy data show <u>2-body (n+⁸Be) breakup</u> in the <u>peak region</u> of the cross section and suggest the emergence of <u>3-body</u> ($n+\alpha+\alpha$) breakup in the high-energy tail.
 - 4. The new $\frac{1}{2}$ + cross section may help to investigate the nuclear structure of the $\frac{1}{2}$ + state, resonance or virtual state.
- 5. The PDR cross section is consistent with the cluster dipole sum rule, which however does not distinguish whether a neutron oscillates in ⁸Be+n or $\alpha + \alpha + n$ configurations. To identify the configuration, a new experiment of $\alpha + \alpha + n$ coincidences is necessary.