Fine Structure Of The Isoscalar Giant Quadrupole Resonance And Fragmentation Of E2 Strengths in ²⁸Si And ²⁷Al*

Iyabo Usman University of the Witwatersrand

On behalf of iThemba/Wits/UCT/RCNP/IKP-TU-Darmstadt K600 Group

*Supported by the South African NRF and the German DFG under contracts SFB 634, NE 679/2-2

Outline

Ine structure of Giant Resonances

- Weigh energy-resolution experiments with K600 Magnetic Spectrometer of iThemba LABS
- Extracted Energy Scales and Comparison in ²⁸Si and ²⁷Al using Wavelet Analysis techniques
- Summary

Fine Structure of Giant Resonances

- Have been established as a Global phenomenon in
 - nuclei across the periodic table
 - other resonances

- Opminant processes of the decay?
- Spin- and parity-resolved level densities at high excitation energies?

Contribution to the width of giant resonances

iThemba LABS Cyclotron Facility

K600 magnetic spectrometer at 0°

Fine structure of the ISGQR

Excitation energy spectra at angles corresponding to the maximum of the ISGQR in ²⁸Si and ²⁷Al.

Wavelet Analysis

Wavelets:

- $\int_{-\infty}^{\infty} \Psi(x) dx = 0$ $\int_{-\infty}^{\infty} \left| \Psi(x) \right|^2 dx < \infty$
- Wavelet coefficients:

Ø Morlet:

- Complex Morlet:
- Complex Lorentzian:

Characteristic Energy Scales in ²⁸Si

Wavelet Coefficient

Comparison with theoretical calculations

• To understand the origin and physical nature of different scales, comparison of experimental results with model calculations is important.

- Such models include
 - Quasi-particle Phonon Model (QPM)
 - Random Phase Approximation (RPA)
 - Second-RPA (SRPA)

Fine structure of the isoscalar giant quadrupole resonance in ⁴⁰Ca due to Landau damping?

I. Usman^{a,b}, Z. Buthelezi^a, J. Carter^b, G.R.J. Cooper^c, R.W. Fearick^d, S.V. Förtsch^a, H. Fujita^{a,b}, Y. Fujita^e, Y. Kalmykov^f, P. von Neumann-Cosel^{f,*}, R. Neveling^a, P. Papakonstantinou^f, A. Richter^{f,g}, R. Roth^f, A. Shevchenko^f, E. Sideras-Haddad^b, F.D. Smit^a

What is the origin of scales in ⁴⁰Ca?

The RPA model accounts for Landau damping, which plays an important role in the case of ⁴⁰Ca.

Experimental and Theoretical Energy Scales

Semblance and Dot Product Analysis

Wavelet based semblance S

 $S = \cos^{n} (\theta)$ $\theta = \tan^{-1} \left(I \left(CWT_{1,2} \right) / R \left(CWT_{1,2} \right) \right)$ $CWT_{1,2} = CWT_{1}.CWT_{2}^{*}$

Cross-wavelet transform CWT_{1,2}

Oot-product D

$$D = \cos^n\left(\theta\right) \left| CWT_{1,2}\right|$$

Where *n* is an odd integer greater than zero,

 θ is the local phase which can be range from $-\pi$ and $+\pi$, $CWT_{1,2}$ is a complex quantity with CWT_1 as the continuous wavelet transform of dataset 1 and CWT_2 as the continuous wavelet transform of dataset 2.

Ref: G.R.J. Cooper and D. R. Cowan, Computers and Geosciences 34 (2008) 95.

Semblance Analysis of ²⁸Si and ²⁷Al(p,p')

- The Fine structure conforms to the suggestion of the global character of this phenomenon in the ISGQR, present in many different nuclei.
- RPA and SRPA calculations do not reveal the energy scales below 300 KeV in ²⁸Si.
- Blue area indicating anti-correlation between the ISGQR regions of ²⁸Si and ²⁷Al. This can be due to the restricted configuration available in the extreme single-particle shell model.

K600 Collaboration

iThemba LABS

- R. Neveling F. D. Smit
- University of the Witwatersrand
 - J. Carter G.R. Cooper E. Sideras-Haddad L. Pellegri L. Donaldson
 - M. Latif
- Stellenbosch University P. Papka J.J. Van Zyl P. Adsley
- University of Cape Town

R.W. Fearick

- TU Darmstadt
 - P. von Neumann-Cosel V.Yu. Ponomarev A. Richter
- RCNP/Osaka University
 - H. Fujita Y. Fujita A. Tamii
- University of Notre Dame
 G. Berg
 A. Long
- University of Birmingham

M. Freer

