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I. Introduction
The resonance-line structures, corresponding to simple modes

of nuclear excitations (single-quasiparticle- and particle-hole-type)
are observed in nuclear reactions at high excitation energies (up to
a few tens of MeV). Therefore, for these energies the mean-field
concept does work, or (that is the same) nuclei are “grey” (not
“black”) for the mentioned degrees of freedom.

To describe coupling of these high-energy modes to many-
quasiparticle (chaotic) states (the spreading effect) only a
phenomenological way seems to be realistic and related to the
corresponding optical models. Microscopically-based transition to
these models is based on many-body Green function method
introduced in nuclear physics by Migdal.



The main topic of this presentation is the
description of the recently developed particle-
hole dispersive optical model (PHDOM) and
some implementations of this model. The
“traditional” single-quasiparticle dispersive
optical model (SQDOM) is also discussed
together with a description of deep-hole
states.



II. PHDOM

1. General description

1.1. The particle–hole dispersive optical model is 
developed recently (U., PAN’11, PRC’13) to describe in a 
semimicroscopic way the main properties of a great 
variety of high-energy (p-h)-type nuclear excitations 
(including giant resonances) in “hard” medium-heavy 
mass spherical nuclei.

1.2. Within the model, the main relaxation modes of the 
above-mentioned excitations are commonly taken into 
account.



These modes are:
(i) distribution of the p-h strength, or Landau 

damping ,~  the result of shell structure of 
nuclei;

(ii) coupling of (p-h)-type states to the s.p. 
continuum ~ nuclei are the open Fermi-
systems;

(iii)coupling of (p-h)-type states to many quasi-
particle (chaotic) configurations, or the 
spreading effect ~  high  excitation energies.       



1.3. Within the PHDOM, which is a   semi-
microscopic model, Landau damping and 
coupling to the s.p. continuum are described  
microscopically (in terms of a mean field  and 
p-h interaction), while the spreading effect is 
treated phenomenologically and in average 
over the energy (in terms of the imaginary 
part of an effective optical-model potential).



1.4. Microscopically based transition to the
PHDOM (as well as to the single-quasiparticle
DOM) is performed with the use of the many-
body Green function method introduced in
nuclear physics by Migdal (“Nauka”,’67,’83).
Actually, the PHDOM is an extension of the
standard and non-standard continuum-RPA
(cRPA) versions on phenomenological account
for the spreading effect. The imaginary part of
the effective optical-model potential determines
also the corresponding real part via a proper
dispersive relationship (Tulupov, U., PAN’09).



1.5. The unique feature of the PHDOM is its 
ability to describe:
(i) direct-nucleon-decay properties of  the  

(p-h)-type states, including the so-
called direct+semidirect (DSD) 
reactions induced by a s.p. external 
field; 

(ii) the energy-averaged double p-h 
transition density and, therefore, 
various strength functions at arbitrary 
(but high-enough) excitation energies, 
including giant resonances.



1.6. Ingredients of the model:

(i) Landau-Migdal p-h interaction and a 
phenomenological partially self-consistent mean 
field. In the description of photonuclear reactions 
the isovector velocity-dependent forces taken in 
the simplest (separable) form are also used;

(ii) the energy-dependent phenomenological 
imaginary part of an effective optical-model 
potential



2. Basic relationships (schematically)

2.1. The expressions for the main energy-averaged  
quantities look similarly to the corresponding 
expressions of the cRPA standard and non-standard 
versions (i.e. obtained without taking the spreading 
effect into account).
(i) The strength function 𝑆𝑆𝑉𝑉0 𝜔𝜔 corresponding to 

a s.p. external field 𝑉𝑉0 (𝜔𝜔 is the excitation 
energy):

𝑆𝑆𝑉𝑉0 𝜔𝜔 = −
1
𝜋𝜋

Im∫ 𝑉𝑉0+ 𝑥𝑥 𝐴𝐴0 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 𝑉𝑉 𝑥𝑥′, 𝜔𝜔 𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥′.



(ii) The effective field 𝑉𝑉(𝑥𝑥, 𝜔𝜔) is different
from 𝑉𝑉0(𝑥𝑥) due to a p-h interaction
𝐹𝐹(𝑥𝑥, 𝑥𝑥′), which is responsible for long-
range correlations:

𝑉𝑉 𝑥𝑥,𝜔𝜔 = 𝑉𝑉0 𝑥𝑥 + ∫ 𝐹𝐹 𝑥𝑥, 𝑥𝑥1 𝐴𝐴0 𝑥𝑥1, 𝑥𝑥2, 𝜔𝜔 𝑉𝑉 𝑥𝑥2,𝜔𝜔 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2,

Where the key PHDOM quantity 𝐴𝐴0 is the
“free” p-h propagator corresponding to the
model of independent and damping
quasiparticles.



(iii) The  amplitude 𝑀𝑀𝑉𝑉,𝜇𝜇 of the DSD reaction
induced by the external field 𝑉𝑉0(𝑥𝑥) and 
accompanied by population of one-hole state 
𝜇𝜇−1 of the product nucleus:
𝑀𝑀𝑉𝑉,𝜇𝜇 𝜔𝜔 = 𝑛𝑛𝜇𝜇

⁄1 2∫ 𝜑𝜑𝜀𝜀>0
+ 𝑥𝑥 𝑉𝑉 𝑥𝑥,𝜔𝜔 𝜑𝜑𝜇𝜇∗ 𝑥𝑥 𝑑𝑑𝑑𝑑,

𝑏𝑏𝜇𝜇 𝛿𝛿 = ��
(𝛿𝛿)

𝑀𝑀𝑉𝑉,𝜇𝜇 𝜔𝜔 2𝑑𝑑𝑑𝑑 �
(𝛿𝛿)
𝑆𝑆𝑉𝑉0 𝜔𝜔 𝑑𝑑𝑑𝑑

Here, 𝑛𝑛𝜇𝜇 is the occupation factor, 𝜑𝜑𝜀𝜀>0
+ 𝑥𝑥 and 

𝜑𝜑𝜇𝜇 𝑥𝑥 are the s.p. continuum-state and bound-
state wave functions, 𝜀𝜀 = 𝜔𝜔 + 𝜀𝜀𝜇𝜇 > 0 is the 
kinetic energy of the escaped nucleon, 𝑏𝑏𝜇𝜇 𝛿𝛿 is 
the partial branching ratio for direct  nucleon  
decay from an energy interval 𝛿𝛿.



(iv) The Bethe-Goldstone-type equation is actually the 
basic PHDOM equation

𝐴𝐴 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 = 𝐴𝐴0(𝑥𝑥, 𝑥𝑥′, 𝜔𝜔) + �𝐴𝐴0(𝑥𝑥, 𝑥𝑥1,𝜔𝜔) 𝐹𝐹 𝑥𝑥1, 𝑥𝑥2 𝐴𝐴 𝑥𝑥2, 𝑥𝑥′, 𝜔𝜔 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2

for the energy-averaged p-h effective propagator, which 
determines the p-h double transition density

ρ 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 = −
1
π

Im 𝐴𝐴(𝑥𝑥, 𝑥𝑥′, 𝜔𝜔)

and also the above-mentioned strength function

𝑆𝑆𝑉𝑉0(𝜔𝜔) = − 1
𝜋𝜋

Im∫ 𝑉𝑉0+ 𝑥𝑥 𝐴𝐴 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 𝑉𝑉0 𝑥𝑥′ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.



2.2 The key PHDOM quantity 𝐴𝐴0(𝑥𝑥, 𝑥𝑥′, 𝜔𝜔) is the 
energy-averaged “free” p-h propagator. Being 
derived with taking a statistical assumption into 
account, the expression for 𝐴𝐴0 is:

𝐴𝐴0 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 = ∑𝜆𝜆𝜆𝜆 𝜑𝜑𝜆𝜆 𝑥𝑥 𝜑𝜑𝜇𝜇∗ 𝑥𝑥 𝜑𝜑𝜆𝜆
∗ 𝑥𝑥′ 𝜑𝜑𝜇𝜇 𝑥𝑥′ 𝐴𝐴𝜆𝜆𝜆𝜆 𝜔𝜔 ,

𝐴𝐴𝜆𝜆𝜆𝜆 = 𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇
𝜀𝜀𝜆𝜆−𝜀𝜀𝜇𝜇−𝜔𝜔+ 𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇 𝑖𝑖𝑖𝑖 𝜔𝜔 −𝑃𝑃 𝜔𝜔 𝑓𝑓𝜆𝜆𝑓𝑓𝜇𝜇

,

where −𝑖𝑖𝑖𝑖 𝜔𝜔 + 𝑃𝑃 𝜔𝜔 is the intensity of a 
specific p-h interaction, which appears due to the 
spreading effect, 𝑓𝑓𝜆𝜆 = ∫ 𝑓𝑓𝑊𝑊𝑊𝑊 𝑥𝑥 𝜑𝜑𝜆𝜆 𝑥𝑥 2𝑑𝑑𝑑𝑑, 
𝑓𝑓𝑊𝑊𝑊𝑊 𝑟𝑟, 𝑅𝑅, 𝑎𝑎 − the Woods-Saxon function. 



2.3. The PHDOM continuum version follows from the
approximate transformation of the above-given expression
for 𝐴𝐴0 𝑥𝑥, 𝑥𝑥′, 𝜔𝜔 to the form, which contains also the optical-
model Green functions 𝑔𝑔(𝑥𝑥, 𝑥𝑥′, 𝜀𝜀𝜇𝜇 ± 𝜔𝜔) . The non-
gomogenious equation for these functions contains the
optical-model-like addition to the mean field: [−𝑖𝑖𝑖𝑖 𝜔𝜔 +



Actually, the dispersive relationship follows from the
2p-2h Green function spectral expansion.

The simplest version of this relationship

𝑃𝑃 𝜔𝜔 =
2
𝜋𝜋
𝑃𝑃. 𝑉𝑉.�𝑊𝑊(𝜔𝜔′)

𝜔𝜔′
𝜔𝜔2 − 𝜔𝜔′2

+
1
𝜔𝜔′

𝑑𝑑𝜔𝜔

is adopted to satisfy the condition: 𝑃𝑃(𝜔𝜔 → 0) → 0.



2.4 A weak violation of the PHDOM unitarity
takes place due to an energy dependence of
𝑃𝑃(𝜔𝜔) and 𝑊𝑊(𝜔𝜔) and also to the use of the
approximate spectral expansion for the OM
Green functions. This violation can be
eliminated (Gorelik et al., NSRT-2015,
Dubna).



Restoration of the model unitarity can be done as
follows:
(i) Within the realistic approximation (𝑑𝑑𝑑𝑑/𝑑𝑑𝜔𝜔)2≪
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑, the key PHDOM quantity is renormalized:

𝐴𝐴𝜆𝜆𝜆𝜆 → 𝐴𝐴𝜆𝜆𝜆𝜆
𝑅𝑅 = (𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇)𝑅𝑅𝜆𝜆𝜆𝜆(𝜔𝜔)

𝜀𝜀𝜆𝜆−𝜀𝜀𝜇𝜇−𝜔𝜔+ 𝑛𝑛𝜆𝜆−𝑛𝑛𝜇𝜇 𝑖𝑖𝑊𝑊𝜆𝜆𝜆𝜆
𝑅𝑅 𝜔𝜔 −𝑃𝑃 𝜔𝜔 𝑓𝑓𝜆𝜆𝑓𝑓𝜇𝜇

,

𝑅𝑅𝜆𝜆𝜆𝜆 𝜔𝜔 = 1 − 𝑓𝑓𝜆𝜆𝑓𝑓𝜇𝜇
𝑑𝑑𝑃𝑃 𝜔𝜔
𝑑𝑑𝜔𝜔

;𝑊𝑊𝜆𝜆𝜆𝜆
𝑅𝑅 𝜔𝜔

= 𝑊𝑊 𝜔𝜔 𝑓𝑓𝜆𝜆𝑓𝑓𝜇𝜇𝑅𝑅𝜆𝜆𝜆𝜆 𝜔𝜔 .
As a result, the renormalized p-h strength is restored:

𝑆𝑆𝜆𝜆𝜆𝜆
𝑅𝑅 = −

1
𝜋𝜋
� Im𝐴𝐴𝜆𝜆𝜆𝜆

𝑅𝑅 𝜔𝜔 𝑑𝑑𝜔𝜔 = 1 − 𝑛𝑛𝜆𝜆 𝑛𝑛𝜇𝜇



(ii) In the description of the isoscalar monopole
(ISM) strength functions corresponding to an ISM
external field 𝑉𝑉0 𝐫𝐫 = 𝑉𝑉0(𝑟𝑟)𝑌𝑌00, the radial part 𝑉𝑉0(𝑟𝑟)
should be modified:

𝑉𝑉0 → 𝑉𝑉0 𝑟𝑟 −< 𝑉𝑉0 >,
Where averaging is performed on the ground-state
matter density.
Improvement of description of the EWSR for ISM
strength function is about 5%.
In particular, small negative values of these strength
functions are excluded.



3. Simplest photonuclear reactions (Tulupov, U. PRC’14).
3.1. The isovector giant dipole and quadruple resonances (IVGDR and IVGQR)
are systematically studied by means of photonuclear reactions. The simplest
reactions are photoabsorption and DSD photoneutron and inverse reactions.

To describe these reactions within the PHDOM we use the corresponding external
fields as follows (𝑄𝑄𝐿𝐿𝐿𝐿 = 𝑟𝑟𝐿𝐿𝑌𝑌𝐿𝐿𝐿𝐿):

IVGDR→ 𝑉𝑉0 𝑥𝑥 = −1
2
𝜏𝜏 3 𝑄𝑄1𝑀𝑀; ISGQR+IVGQR → 1

2
1 − 𝜏𝜏 3 𝑄𝑄2𝑀𝑀.

Within the accuracy 1 ≪ 𝑁𝑁 − 𝑍𝑍 ≪ 𝐴𝐴, the equations for isovector (𝑇𝑇 = 1) and
isoscalar (𝑇𝑇 = 0) effective fields are decoupled. These fields 𝑉𝑉𝐿𝐿𝐿𝐿𝑇𝑇=1 𝑉𝑉0,𝐿𝐿𝐿𝐿

𝑇𝑇=1 = 𝑄𝑄𝐿𝐿𝐿𝐿
and 𝑉𝑉2𝑀𝑀𝑇𝑇=0 𝑉𝑉0,2𝑀𝑀

𝑇𝑇=0 = 𝑄𝑄2𝑀𝑀 determine, in particular, the neutron effective fields:

𝑉𝑉1𝑀𝑀
𝑛𝑛 = −1

2
𝑉𝑉1𝑀𝑀𝑇𝑇=1; 𝑉𝑉2𝑀𝑀

𝑛𝑛 = 1
2
𝑉𝑉2𝑀𝑀𝑇𝑇=0 − 𝑉𝑉2𝑀𝑀𝑇𝑇=1 .

The latters determine the amplitudes of the DSD photoneutron and inverse
reactions. The excitation of the IVGQR (and ISGQR) in these reactions is possible
only due to a p-h interaction.



3.2. Photoabsorption cross section
𝜎𝜎𝑎𝑎,𝐸𝐸𝐸 𝜔𝜔 (𝜎𝜎𝑎𝑎,𝐸𝐸𝐸 + 𝜎𝜎𝑎𝑎,𝐸𝐸𝐸)

The adjustable parameters obtained to describe 𝜎𝜎𝑎𝑎
𝑒𝑒𝑒𝑒𝑒𝑒 𝜔𝜔

208Pb
𝛿𝛿 = 7.5 − 37.5 MeV
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3633 mbMeV
𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 = 3583 mbMeV

A consistency of the model

Nucleus 89Y 140Ce 208Pb
α, MeV-1 0.125 0.10 0.08
k’ 0.15 0.13 0.17
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3.3. DSD neutron radiative capture
No free parameters!





3.4. Partial DSD 208Pb(γ,n) reaction cross 
sections (predictions).

Partial branching ratios for IVGDR direct 
neutron decay

btot = 12.55%

µ 3p1/2 2f5/2 3p3/2 1i13/2 1h9/2 1f7/2

bµ 1.79 3.61 3.10 1.37 2.15 0.53





3.5. IVGDR+IVGQR
The asymmetry of the DSD partial differential (γ,n)
and inverse reaction cross sections is linear on the E2-
reaction amplitude and, therefore, is the appropriate
subject for study of the IVGQR in photonuclear
reactions.

𝛼𝛼𝜇𝜇 =
𝑑𝑑𝜎𝜎𝜇𝜇

− (𝜔𝜔, 𝜃𝜃1)

𝑑𝑑𝜎𝜎𝜇𝜇
+ (𝜔𝜔, 𝜃𝜃1)

;

𝑑𝑑𝜎𝜎𝜇𝜇
∓ (𝜔𝜔, 𝜃𝜃1)
𝑑𝑑Ω

=
𝑑𝑑𝜎𝜎𝜇𝜇 𝜔𝜔, 𝜃𝜃1

𝑑𝑑Ω ∓
𝑑𝑑𝜎𝜎𝜇𝜇 𝜔𝜔, 𝜋𝜋 − 𝜃𝜃1

𝑑𝑑Ω ;
𝜃𝜃1 = 55∘

The adjustable parameter 𝑘𝑘2′ = 0.1









4. Isoscalar monopole (ISM) excitations in medium-
heavy mass spherical nuclei (Gorelik, Shlomo,
Tulupov, U., PAN ,`15)
Investigations of ISM excitations allow to get info about nuclear
matter incompressibility coefficient.

4.1. First, we study within the PHDOM the ISM relative energy-
weighted strength functions

𝑦𝑦𝑖𝑖 𝜔𝜔 = �𝜔𝜔𝑆𝑆𝑉𝑉0,𝑖𝑖 𝜔𝜔 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑉𝑉0,𝑖𝑖 ,
corresponding to the ISM external fields 𝑉𝑉0,𝑖𝑖 𝑥𝑥
𝑉𝑉0,1 = 𝑟𝑟2𝑌𝑌00 and 𝑉𝑉0,2 = 𝑟𝑟2 𝑟𝑟2 − 𝜂𝜂 𝑌𝑌00
(η is an adjustable parameter) which lead to excitation of the
isoscalar monopole giant resonance (ISGMR) and its overtone
(ISGMR2).
The strength functions calculated within the PHDOM for 208Pb are
shown in the following figure.





4.2. To deduce the ISM strength distribution from the
inelastic 𝛼𝛼, 𝛼𝛼′ -scattering cross sections at small
angles actually it is necessary to know the ISM
energy-averaged double transition density:

𝜌𝜌 𝑟𝑟, 𝑟𝑟′, 𝜔𝜔 = 〈𝜌𝜌 𝑟𝑟, 𝜔𝜔 𝜌𝜌 𝑟𝑟′, 𝜔𝜔 〉
at arbitrary energies. For 208Pb we evaluate within the
PHDOM the corresponding reduced quantity

𝑅𝑅 𝑟𝑟, 𝑟𝑟′, 𝜔𝜔 = ⁄𝜌𝜌(𝑟𝑟, 𝑟𝑟′, 𝜔𝜔) ∫ 𝜌𝜌 𝑟𝑟 = 𝑟𝑟′, 𝜔𝜔 𝑑𝑑𝑑𝑑
and compare the results for 𝑅𝑅 𝑟𝑟 = 𝑟𝑟′, 𝜔𝜔 with those
obtained with the use of the semi-classical collective
model transition densities 𝜌𝜌𝑠𝑠𝑠𝑠,𝑖𝑖(𝑟𝑟) (independent of 𝜔𝜔):

𝑅𝑅𝑠𝑠𝑠𝑠,𝑖𝑖 𝑟𝑟 = 𝑟𝑟′ = �𝜌𝜌𝑠𝑠𝑠𝑠,𝑖𝑖
2 (𝑟𝑟) ∫ 𝜌𝜌𝑠𝑠𝑠𝑠,𝑖𝑖

2 𝑟𝑟 𝑑𝑑𝑑𝑑 .





III. SQDOM
• Being the oldest nuclear model, the OM was originally

formulated in terms of the S-matrix for nucleon scattering by the
potential having an imaginary part. The dispersive version of the
model has been formulated in a rather formal way (Mahaux,
Sartor, Adv. Nucl. Phys. 1991).

• Being interested in description of damping of deep-hole states in
medium-heavy spherical nuclei, we start formulation of the
SQDOM from the energy-averaged Dyson equation for the s-p
Green’s function. As a result, we get the following relationships
presented below in a simplified form (Kolomiytsev, Igashov, U.,
PAN ’14, NSRT-2015).



3.1 Basic relationships
• Equation for the radial Green’s function of an OM Shrödinger

equation:
ℎ0,𝑗𝑗𝑗𝑗 𝑟𝑟 + Δ 𝑟𝑟, 𝜀𝜀 − 𝑖𝑖𝑖𝑖 𝑟𝑟, 𝜀𝜀 sgn(𝜀𝜀 − 𝜇𝜇) − 𝜀𝜀 𝑔𝑔𝑗𝑗𝑗𝑗(𝑟𝑟, 𝑟𝑟′, 𝜀𝜀) = −𝛿𝛿 𝑟𝑟 − 𝑟𝑟′ .
• ℎ0,𝑗𝑗𝑗𝑗 𝑟𝑟 is the radial part of a s-p Hamiltonian adopted to describe the

single-quasiparticle spectra near the Fermi energy (chemical potential
𝜇𝜇) for the doubly-closed-shell nuclei;

• 𝑊𝑊 𝑟𝑟, 𝜀𝜀 = 𝑊𝑊 𝜀𝜀 𝑓𝑓𝑊𝑊𝑊𝑊(𝑟𝑟) is the OM potential imaginary part taken as
the even function of excitation energy 𝐸𝐸 = 𝜀𝜀 − 𝜇𝜇 for particles and
holes: 𝑊𝑊 𝜀𝜀 = 𝑊𝑊 𝐸𝐸 (𝑓𝑓𝑊𝑊𝑊𝑊(𝑟𝑟) is the Woods-Saxon function);

• Δ 𝑟𝑟, 𝜀𝜀 = Δ 𝜀𝜀 𝑓𝑓𝑊𝑊𝑊𝑊(𝑟𝑟) , Δ = Δ𝑝𝑝 + Δ𝑑𝑑 , where Δ𝑝𝑝(𝜀𝜀) simulates the
mean-field energy dependence, while Δ𝑑𝑑(𝜀𝜀) is due to the spreading
effect and satisfies the dispersive relationship:

Δ𝑑𝑑 𝜀𝜀 =
2𝐸𝐸
𝜋𝜋

𝑃𝑃. 𝑉𝑉.�
0

∞ 𝑊𝑊 𝐸𝐸′

𝐸𝐸2 − 𝐸𝐸′2
𝑑𝑑𝑑𝑑′

In fact, this equation follows from the spectral expansion for the 3-particle
Green function which determines the s-p self-energy operator.



3.2 From the spectral expansion of the s-p Green function follows the
number of particles conversation (the model unitarity):

𝑁𝑁 = �
𝑗𝑗𝑙𝑙

(2𝑗𝑗 + 1)𝑛𝑛𝑗𝑗𝑗𝑗 ; 𝑛𝑛𝑗𝑗𝑗𝑗 = �𝑆𝑆𝑗𝑗𝑗𝑗
− 𝜀𝜀 𝑑𝑑𝑑𝑑 ,

Where the s-h strength function is defined as follows:

𝑆𝑆𝑗𝑗𝑗𝑗
− 𝜀𝜀 =

1
𝜋𝜋

Im�𝑔𝑔𝑗𝑗𝑗𝑗 𝑟𝑟 = 𝑟𝑟′, 𝜀𝜀 < 𝜇𝜇 𝑑𝑑𝑑𝑑 .

3.3 The OM potential energy-dependent part, Δ 𝜀𝜀 , is the main source of
model unitarity violation. In the limit 𝑊𝑊 → 0, the OM Green function’s
poles 𝜀𝜀𝜆𝜆 (𝜆𝜆 = {𝑛𝑛𝑟𝑟, 𝑗𝑗, 𝑙𝑙}), corresponding to s-h excitation energies |𝐸𝐸𝜆𝜆| =
|𝜀𝜀𝜆𝜆 − 𝜇𝜇|, are determined by the equation

ℎ0,𝑗𝑗𝑗𝑗 𝑟𝑟 + Δ 𝑟𝑟, 𝜀𝜀𝜆𝜆 − 𝜀𝜀𝜆𝜆 𝜒𝜒𝜆𝜆(𝑟𝑟) = 0
(the s-h wave functions are supposed to be normalized to unity).



From the equation for 𝑔𝑔𝑗𝑗𝑗𝑗(𝑟𝑟, 𝑟𝑟′, 𝜀𝜀) one gets:

𝑔𝑔𝑗𝑗𝑗𝑗 𝑟𝑟, 𝑟𝑟′, 𝜀𝜀 → 𝜀𝜀𝜆𝜆 →
𝜒𝜒𝜆𝜆(𝑟𝑟)𝜒𝜒𝜆𝜆(𝑟𝑟′)

𝜀𝜀 − 𝜀𝜀𝜆𝜆 −
𝑖𝑖Γ𝜆𝜆
2
𝑅𝑅𝜆𝜆,

𝑅𝑅𝜆𝜆 =
1

1 − Δ′ 𝜀𝜀𝜆𝜆 𝑓𝑓𝜆𝜆
; Γ𝜆𝜆 = 2𝑊𝑊 𝜀𝜀𝜆𝜆 𝑓𝑓𝜆𝜆𝑅𝑅𝜆𝜆

(the realistic supposition 𝑊𝑊′ 𝜀𝜀𝜆𝜆
2 ≪ Δ′ 𝜀𝜀𝜆𝜆 was used).

The s-h strengths 𝑆𝑆𝜆𝜆
− = ∫𝑆𝑆𝜆𝜆

− 𝜀𝜀 𝑑𝑑𝑑𝑑 = 𝑅𝑅𝜆𝜆 are found to be
strongly overestimated (realistic values of 𝑅𝑅𝜆𝜆 are about factor of 2).



3.4 To restore the model unitarity, one can use renormalized basic
equation:

ℎ0,𝑗𝑗𝑗𝑗 𝑟𝑟 + Δ 𝑟𝑟, 𝜀𝜀 −
𝑖𝑖𝑖𝑖 𝑟𝑟, 𝜀𝜀
𝑅𝑅 𝜀𝜀

sgn 𝜀𝜀 − 𝜇𝜇 − 𝜀𝜀 𝑔𝑔𝑗𝑗𝑗𝑗𝑅𝑅 (𝑟𝑟, 𝑟𝑟′, 𝜀𝜀)

= −
1

𝑅𝑅 𝜀𝜀
𝛿𝛿 𝑟𝑟 − 𝑟𝑟′ .

In a vicinity of the s-h energy 𝜀𝜀𝜆𝜆 one gets:

𝑔𝑔𝑗𝑗𝑗𝑗𝑅𝑅 𝑟𝑟, 𝑟𝑟′, 𝜀𝜀 → 𝜀𝜀𝜆𝜆 →
𝜒𝜒𝜆𝜆(𝑟𝑟)𝜒𝜒𝜆𝜆(𝑟𝑟′)

𝜀𝜀 − 𝜀𝜀𝜆𝜆 −
𝑖𝑖Γ𝜆𝜆𝑅𝑅

2
with Γ𝜆𝜆𝑅𝑅 = 2𝑊𝑊 𝜀𝜀𝜆𝜆 𝑓𝑓𝜆𝜆 and with the s-h strength 𝑆𝑆𝜆𝜆

− 𝑅𝑅 ≈ 1.



3.5 Implementation of the SQDOM to deep-hole states

• Contribution of the spreading effect to the depp-hole state
excitation energy for 90𝑍𝑍𝑍𝑍 and 208𝑃𝑃𝑃𝑃 is estimated with the
use of experimental deep-hole energies 𝜀𝜀𝜆𝜆 and total widths
Γ𝜆𝜆 deduced from the 𝑝𝑝, 2𝑝𝑝 - and 𝑝𝑝, 𝑝𝑝𝑝𝑝 -reactions
(Vorobyov et al., PAN’95). Being based on the above-
given eqs. for 𝜒𝜒𝜆𝜆(𝑟𝑟) and Γ𝜆𝜆

𝑅𝑅 one can find the quantities
𝑊𝑊 𝜀𝜀𝜆𝜆 , Δ 𝜀𝜀𝜆𝜆 . The set of values 𝑊𝑊 𝜀𝜀𝜆𝜆 is then adopted by
a proper function 𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓 |𝐸𝐸| , which is further used to
estimate the OM potential dispersive part Δ𝑑𝑑 𝜀𝜀 . The
results shown in Figs. for neutron and proton deep-hole
states in 208𝑃𝑃𝑃𝑃 illustrate significant contribution of the
spreading effect to the deep-hole states excitation energy.







• Using the renormalized OM Green function we
can evaluate the s-h strength functions for the case
of rather overlapping s-h resonances (e.g. 𝑠𝑠1/2 and
𝑝𝑝3/2 deep neutron-hole states in 208𝑃𝑃𝑃𝑃). In such a
case representation of the strength functions as a
superposition of proper lorentzians is rougthly
possible (Figs.)







IV. Conclusive remarks
The presented p-h dispersive optical model allowing to
take into account the main relaxation modes of high-energy
nuclear excitations seems to be an “economical” model for
description of main properties of these excitations in
medium-heavy mass “hard” spherical nuclei. Some
implementations of the model demonstrate its abilities.
The microscopically based transition to the single-quasi-
particle optical model open the possibilities to further
development of this model.

Many thanks for your attention!
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