Excitation of E1Pygmy in Inelastic Proton Scattering and RCNP Activities

Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

COMEX5

5th International Conference on Collective Motion in Nuclei under Extreme Conditions Krakow, September 14-18, 2015 Excitation of E1 States in Inelastic Proton

Scattering and RCNP Activities spin-M1 and future exp.

Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

COMEX5

5th International Conference on Collective Motion in Nuclei under Extreme Conditions Krakow, September 14-18, 2015

Excitation of E1 States in Inelastic Proton

Scattering and RCNP Activities spin-M1 and future exp.

Other RCNP activities covered by (α,α') U. Garg, Y. Gupta,
(³He,t) Y. Fujita, D. Frekers
DCEX M. Takaki
also by M.H. Harakeh

Contents

1. Electric Dipole Responses

Electric Dipole Polarizability Pygmy Dipole Resonance (Neutron Skin) Symmetry Energy

2. Spin-M1 Responses

Quenching of IS/IV Spin-M1 Strengths *np*-pairing Correlation, Nuclear Spin (Magnetic) Susceptibility

3. Future Experiment

GR + Gamma coincidence (CAGRA+GR)

Electric Dipole Response

is one of most basic responses of nuclei

but is not fully understood yet.

Electric Dipole Response of Nuclei

- Nature of the PDR, the existence of the toroidal modes
- Fine structure of the GDR
- Sum rules, dipole polarizability → Symmetry Energy

Electric Dipole Response of Nuclei

- Nature of the PDR, the existence of the toroidal modes
- Fine structure of the GDR
- Sum rules, dipole polarizability → Symmetry Energy

Nuclear Equation of State (EOS) at zero temperature

Saturation Density ~0.16 fm⁻³

Electric Dipole Polarizability (α_D)

Electric Dipole Polarizability α_D

Electric Dipole Polarization

 $\vec{P} = N\alpha\vec{E}$

Restoring force ← symmetry energy

 α : dipole polarizability of an atom

Inversely energy weighted sum-rule of B(E1)

$$\alpha_D = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{abs}^{E1}}{\omega^2} d\omega = \frac{8\pi}{9} \int \frac{dB(E1)}{\omega} \qquad - \square$$

Requires the B(E1) distribution

Electric Dipole Polarizability (α_D)

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Covariance analysis with SV-min interaction in the framework of the nuclear energy density functional.

Strong correlation between the α_D and the neutron skin of ^{208}Pb

X. Roca-Maza et al., PRC88, 024316(2013)

Correlations observed in various interaction sets.

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

insights from the droplet model

Electric Dipole Response of Nuclei

Probing the E1 response of nuclei

• Missing mass spectroscopy:

Total strength is measured independently of the decay channels.

- **Multipole decomposition** of the strength in the continuum: Includes the contribution of unresolved small states
- Coulomb excitation:

EM Interaction is well known (model independent)

Absolute determination of the transition strength.

B(E1) Probing the E1 response of nuclei

- Single shot measurement across S_n in $E_x = 5-22$ MeV.
- Uniform detection efficiency (80-90%) and solid angle
- High energy resolution (20-30 keV)
- Polarized beam, polarization detection \rightarrow extraction of E1
- Isotopically enriched target with a few mg/cm² thickness

Experimental Method

High-resolution polarized (p,p') measurement at zero degrees and forward angles

Research Center for Nuclear Physics (RCNP), Osaka University

AVF Cyclotron Facility

Spectrometers in the 0-deg. experiment setup at RCNP, Osaka AT et al., NIMA605, 326 (2009)

Comparison between the two methods for the decomposition of E1 and spin-M1

Comparison with (γ, γ') and (γ, xn)

E1 Response of ²⁰⁸Pb and α_D

The dipole polarizability of ²⁰⁸Pb has been precisely determined.

AT et al., PRL107, 062502(2011)

Electric Dipole Response of ²⁰⁸Pb

Electric Dipole Response of ²⁰⁸Pb

Energy Weighted (TRK) Sum-Rule of ²⁰⁸Pb

Quasi-Deuteron Excitation Contribution? Photon absorption by a virtual deuteron in the nucleus

The quasi-d contribution may need be subtracted for comparison with the present theoretical predications. (Not adapted yet in the following discussions)

Constraints

X. Roca-Maza et al. PRC88, 024316 (2013)

Neutron Skin Thickness Symmetry Energy Parameters $10^{-2} \alpha_{\rm D} J ~({\rm MeV~fm}^3)$ (MeV fm³ SAMi A M1 $10^{-2} \alpha_{\mathrm{D}} J$ 0.16 0.280.320.20.2480 100120 1404060 Δr_{np} (fm) L (MeV)

Experimental Value = α_D

Constraint in the *J*-*L* plane

 $\Delta r_{np} = 0.165 \pm (0.009)_{expt}$ $\pm (0.013)_{theor} \pm (0.021)_{est}$ fm for the estimated *J*=31 ± (2)_{est}

Constraints on J and L

AT et al., EPJA**50**, 28 (2014). M.B. Tsang *et al.*, PRC**86**, 015803 (2012) C.J. Horowitz et al., JPG41, 093001 (2014)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet

Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

QMC: S. Gandolfi, EPJA50, 10(2014).

I. Tews et al., PRL110, 032504 (2013)

Cluster Dipole Sum-Rule of PDR

Assuming that the PDR is formed by the dipole oscillation of the neutron skin against the other part (core), **PDR** core neutron skin Y. Alhassid, M. Gai and G.F. Bertsch, PRL49, 1482(1982) Cluster Dipole Sum-Rule H. Sagawa and M. Honma, PLB251,17(1990) R. de Diego, E. Garrido et al., PRC77, 024001 (2008) $60 \frac{\left(Z_s A_c - Z_c A_s\right)^2}{A A_s A_c}$ ╋ TRK: $60 \frac{NZ}{M}$ $A_s, N_s, (Z_s = 0) \qquad A_c, N_c, (Z_c = Z)$ A,N,ZNumber of neutrons in the skin: N_s PREX 2% TRK $\rightarrow N_s \sim 12$ antiprotonic atom p elastic scatt. (650 MeV) p elastic scatt. (295 MeV) R_n =5.66 and δR_{np} = 0.168±0.022 dipole polarizability 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 $\rightarrow N_s = 10.9 \pm 1.4$ Neutron Skin Thickness of 208Pb (fm)

The numbers look consistent to each other

Electric Dipole Response of ²⁰⁸Pb

Dipole Polarizability of ¹²⁰Sn

T. Hashimoto et al., to be published in PRC

PDR in ¹²⁰Sn

A.M. Krumbholtz et al., PLB744, 7(2015)

The observed strength by (p,p') is significantly larger than (γ,γ')

Dipole Polarizability of ¹²⁰Sn and ²⁰⁸Pb

Plans in Near Future

- Measurements on ¹¹²Sn, ¹²⁴Sn and on ⁹²Zr, ⁹⁴Zr, ⁹⁶Zr, have been done in May-June, 2015.
- Data analyses on ⁴⁸Ca, ⁹⁰Zr, ⁹⁶Mo, and ¹⁵⁴Sm

Zr isotopes: presentation by C. Iwamoto on Tuesday

Spin-M1 Responses and Quenching of IS/IV Spin-M1 Strengths

H. Matsubara et al., PRL115, 102501 (2015)

1

Self-Conjugate (N=Z) even-even Nuclei

Energy spectra at 0-degrees

IS/IV-spin-M1 distribution

Spin-M1 SNME

H. Matsubara et al., PRL115, 102501 (2015)

- Summed <u>up to 16 MeV</u>.
- Compared with shell-model predictions using the USD interaction

np spin correlation function

$$\vec{S}_{n} \equiv \sum_{i}^{N} \vec{S}_{n,i} \qquad \vec{S}_{p} \equiv \sum_{i}^{Z} \vec{S}_{p,i}$$
$$\left\langle \vec{S}_{n} \cdot \vec{S}_{p} \right\rangle = \frac{1}{4} \left\langle \left(\vec{S}_{n} + \vec{S}_{p} \right)^{2} - \left(\vec{S}_{n} - \vec{S}_{p} \right)^{2} \right\rangle$$
$$= \frac{1}{16} \left(\sum \left| M \left(\vec{\sigma} \right) \right|^{2} - \sum \left| M \left(\vec{\sigma} \tau_{z} \right) \right|^{2} \right)$$

- : *np* spin correlation function of the nuclear ground state
 - → hints isoscalar *np*-pairing

Shell-Model: USD interaction Correlated Gaussian Method: W. Horiuchi Non-Core Shell Model: P. Navratil

ab-initio type calc. with realistic NN int. Shell-Model: USD interaction Correlated Gaussian Method: W. Horiuchi Non-Core Shell Model: P. Navratil

Spin Susceptibility Very Preliminary

Inversely energy-weighted sum rule of the spin-M1 strengths

$$\chi_{\sigma} = \frac{8}{3N} \sum_{f} \frac{1}{\omega} \left| \langle f | \sum_{i} \boldsymbol{\sigma}_{i} | 0 \rangle \right|^{2}$$

Spin Susceptibility of N=Z Nuclei

Α

0.0044(7) MeV⁻¹ at ρ =0.16 fm⁻³

Neutron matter calc. by AFDMC model

G. Shen et al., PRC87, 025802 (2013)

- magnetic response of nuclear matter
- v-emissivity
- v-transportation

Conclusion/Future

LAS at 61 deg

beam

GRAF

GR at 4.5 deg

CAGRA+GR Campaign Exp. in 2016

- Study on PDR by $(p, p'\gamma)$ and $(\alpha, \alpha'\gamma)^{*1}$ isospin/surface property, transition density ang. dep.
- (⁶Li,⁶Li' γ) for IV spin-flip inelastic ex.^{*2}

to beam dump

CAGRA(Clover Ge Array)

E. Ideguchi and M. Carpenter

for γ-coincidence measurements

also plans for LaBr3 detectors

spokespersons:

*2 S. Noji, R.G.T. Zegers et al.,

Conclusion/Future

CAGRA+GR Campaign Exp. in 2016

E441 5.0 days (${}^{6}\text{Li}, {}^{6}\text{Li'}\gamma$) for IV spin-flip inelastic excitation E450 25.0 days (p,p' γ) and ($\alpha, \alpha'\gamma$) for PDR E454 6.0 days (p,p' γ) at 300 MeV and ($\alpha, \alpha'\gamma$) for PDR Total 36.0 days.

Conclusion/Future

• Electric dipole response of ²⁰⁸Pb and ¹²⁰Sn: Measured precisely by proton inelastic scattering.

IV properties of the effective interaction:

- Constraints on the symmetry energy
- Neutron skin thickness, pygmy dipole excitations

Isotope dependence on Sn and Zr have been measured.

• Non-quenching IS spin-*M1* matrix elements in *sd*-shell.

 \leftarrow

Quenching of IV spin-M1 and GT matrix elements.

- Requires further knowledge on the quenching phenomena.
- Hints IS np-pairing correlation in the ground state.

T. Hashimoto et al., to be published in PRC.

²⁰⁸Pb

RCNP-282 Collaboration

RCNP, Osaka University

A. Tamii, H. Matsubara, H. Fujita, K. Hatanaka, H. Sakaguchi Y. Tameshige, M. Yosoi and J. Zenihiro

IKP, TU-Darmstadt

P. von Neumann-Cosel, A-M. Heilmann, Y. Kalmykov, I. Poltoratska, V.Yu. Ponomarev, A. Richter and J. Wambach

KVI, Univ. of Groningen T. Adachi and L.A. Popescu IFIC-CSIC, Univ. of Valencia B. Rubio and A.B. Perez-Cerdan Sch. of Science Univ. of Witwatersrand J. Carter and H. Fujita iThemba LABS F.D. Smit Texas A&M Commerce C.A. Bertulani **GSI** E. Litivinova

Dep. of Phys., Osaka University Y. Fujita

Dep. of Phys., Kyoto University T. Kawabata

CNS, Univ. of Tokyo K. Nakanishi, Y. Shimizu and Y. Sasamoto

CYRIC, Tohoku University M. Itoh and Y. Sakemi

Dep. of Phys., Kyushu University M. Dozono
Dep. of Phys., Niigata University Y. Shimbara 33

^{120}Sn

RCNP-316 Collaboration

T. Hashimoto⁺, A. M. Krumbholz¹, A. Tamii², P. von Neumann-Cosel¹, N. Aoi²,
O. Burda², J. Carter³, M. Chernykh², M. Dozono⁴, H. Fujita², Y. Fujita²,
K. Hatanaka², E. Ideguchi², N. T. Khai⁵, C. Iwamoto², T. Kawabata⁶,
D. Martin¹, K. Miki¹, R. Neveling⁷, H. J. Ong², I. Poltoratska¹, P.-G. Reinhard⁸,
A. Richter¹, F.D. Smit⁶, H. Sakaguchi^{2,4}, Y. Shimbara⁹, Y. Shimizu⁴, T. Suzuki²,
M. Yosoi¹, J. Zenihiro⁴, K. Zimmer¹

[†]Institute for Basic Science, Korea ¹IKP, Technische Universität Darmstadt, Germany ²RCNP, Osaka University, Japan ³Wits University, South Africa ⁴RIKEN, Japan ⁵Institute for Nuclear Science and Technology (INST), Vietnam ⁶Kyoto University, Japan ⁷iThemba LABs, South Africa ⁸Institut Theoretical Physik II, Universität Erlanen-Nürnberg, Germany ⁹CYRIC, Tohoku University, Japan

spin-M1 RCNP-E241 & E299 Collaboration

H. Matsubara,^{1,†} A. Tamii,¹ H. Nakada,² T. Adachi,¹ J. Carter,³ M. Dozono,^{5,‡} H. Fujita,¹ K. Fujita,^{1,§} Y. Fujita,¹ K. Hatanaka,¹ W. Horiuchi,⁶ M. Itoh,⁷ T. Kawabata,^{4,||} S. Kuroita,⁵ Y. Maeda,⁹ P. Navrátil,¹⁰ P. von Neumann-Cosel,¹¹ R. Neveling,¹² H. Okamura,^{1,*} L. Popescu,^{13,¶} I. Poltoratska,¹¹ A. Richter,¹¹ B. Rubio,¹⁴ H. Sakaguchi,¹ S. Sakaguchi,^{4,§} Y. Sakemi,⁷ Y. Sasamoto,⁴ Y. Shimbara,^{15,**} Y. Shimizu,^{4,††} F. D. Smit,¹² K. Suda,^{1,††} Y. Tameshige,^{1,‡‡} H. Tokieda,⁴ Y. Yamada,⁵ M. Yosoi,¹ and J. Zenihiro^{8,††} ¹Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan ²Department of Physics, Chiba University, Inage, Chiba 263-8522, Japan ³School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa ⁴Center for Nuclear Study (CNS), University of Tokyo, Bunkyo, Tokyo 113-0033, Japan ⁵Department of Physics, Kyushu University, Fukuoka 812-8581, Japan ⁶Department of Physics, Hokkaido University, Sapporo 060-0810, Japan ⁷Cyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Miyagi 980-8578, Japan ⁸Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁹Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan ¹⁰TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada ¹¹Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ¹²iThemba LABS, National Research Foundation, Somerset West 7129, South Africa ¹³Vakgroep Subatomaire en Stralingsfysica, Universiteit Gent, B-9000 Gent, Belgium ¹⁴Instituto of Fisica Corpuscular, CSIC-University de Valencia, E-46071 Valencia, Spain ¹⁵Graduate School of Science and Technology, Niigata University, Niigata 950-2102, Japan

Fine Structure of GDR and its direct g.s. gamma decay (under discussion)

Unit cross section (UCS)

- Conversion factor from cross-section to Squared Nuclear Matrix Elements (SNME)
- Calibration from β andγ-decay measurements (on the assumption of the isospin symmetry).

$$\frac{d\sigma}{d\Omega}(0^{\circ}) = \hat{\sigma}_{T} F(q, E_{x}) M_{f}(O)^{2} \quad (T = \text{IS or IV})$$

$$\text{UCS} \quad \text{Kinematical factor} \quad \text{SNME}$$

$$\hat{\sigma}_{T}(A) = N \exp(-xA^{1/3})$$

T.N. Taddeucci, NPA469 (1987).

Function taken from the mass dependence of GT UCS

Summary

• Electric dipole response of ²⁰⁸Pb and ¹²⁰Sn have been precisely measured. Proton inelastic scattering was used as an electro-magnetic probe (relativistic Coulomb excitation).

 $\alpha_{\rm D}(^{208}{\rm Pb}) = 20.1 \pm 0.6 \ {\rm fm^3}$ $\alpha_{\rm D}(^{120}{\rm Sn}) = 8.93 \pm 0.36 \ {\rm fm^3}$

- Electric dipole polarizability (α_D) is sensitive to the difference between the proton and neutron distributions.
- The neutron skin thicknesses and the constraints on the symmetry energy parameters have been extracted with the help of mean field calculations.

Backup Slides

Nuclear Equation of State (EOS)

Prediction of the neutron matter EOS is much model dependent.

Neutron Skin and Density Dependence of the Symmetry Energy

For larger *L*:

Neutron Skin and Density Dependence of the Symmetry Energy

For smaller *L*:

Neutron Skin Thickness Measurement by Electroweak Interaction

The model independent determination of δR_{np} by PREX important but the present accuracy is limited.

Electric Dipole Polarizability (α_D)

Electric Dipole Polarizability α_D

Restoring force \leftarrow symmetry energy

Electric Dipole Polarization

 $\vec{P} = \alpha N \vec{E}$

 α : dipole polarizability of an atom

Inversely energy weighted sum-rule of B(E1)

Requires the B(E1) distribution

with neutron skin smaller restoring force

w/o neutron skin larger restoring force Sensitive to the difference between the proton and neutron density distribution.

Neutron Skin Thickness and Dipole Polarizability (α_D)

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Covariance analysis with SV-min interaction in the framework of energy density functional.

Strong correlation between the α_D and the neutron skin of ^{208}Pb

X. Roca-Maza et al., PRC88, 024316(2013)

Correlations observed in various interaction sets.

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

insights from the droplet model

Electric Dipole (E1) Response of Heavy Nuclei

X. Roca-Maza et al., arXiv:1307.4806

 $a_D J$ is a strong isovector indicator.

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

Insights from the droplet model

Two Approaches for the Neutron Skin Thickness

Probing the matter/neutron/weak-charge distribution

Takes the difference from the charge (or *p*) distribution $\rightarrow \Delta R_{np}$

- Less/no model dependence
- Data must be highly accurate

 $\sigma(\Delta R_{np}) = 0.02 \ fm$ coher Both approaches are important.

PREX

p elastic scattering

coherent π production

Probing the difference between the p/n distribution

- Requires theoretical models
- Data can be less accurate

$$\frac{\sigma\left(\Delta R_{np}\right)}{\Delta R_{np}} \sim \frac{0.02 \ fm}{0.2 \ fm} \sim 10^{-1}$$

Dipole Polarizability PDR GDR

Two Approaches for the Neutron Skin Thickness

Probing the matter/neutron/weak-charge distribution

Takes the difference from the charge (or *p*) distribution $\rightarrow \Delta R_{np}$

- Less/no model dependence
- Data must be highly accurate

 $\sigma(\Delta R_{np}) = 0.02 \ fm$

PREX

GDR

p elastic scattering

coherent π production

Both approaches are important.

Probing the difference between the p/n distribution

- Requires theoretical models If *n* diffuseness is changed, the
- Data can be less accurate **E1 response would change.**

$$\frac{\sigma\left(\Delta R_{np}\right)}{\Delta R_{np}} \sim \frac{0.02 \ fm}{0.2 \ fm} \sim 10^{-1}$$

Electric Dipole Response of Nuclei

Proton inelastic scattering as an electro-magnetic probe of the electric dipole response

i.e. at zero degrees

Coulomb Excitation at 0 deg.

EM Interaction is well known (model independent)

Relativistic Proton Inelastic Scattering at Forward Angles as a probe of electric dipole response of nuclei

- •An electromagnetic probe (Coulomb excitation)
- •High-resolution (20-30 keV), high/uniform det. efficiency in E_x
- •Covers a broad E_x of 5-22MeV
- •Insensitive to the decay channels (sensitive to the **total strength**)
- •Requires a **small amount of target material** (several mili-gram) and a few days of beam time
- •Applicable to stable nuclei

(Coulomb excitation/dissociation in inverse kinematics for unstable nuclei)

Research Center for Nuclear Physics (RCNP), Osaka University

AVF Cyclotron Facility

Spin Precession in the Spectrometer

$$\theta_{p} = \gamma \left(\frac{g}{2} - 1\right)\theta_{b}$$

$$\theta_{p}: \text{ precession angle with respect to the beam direction}$$

$$\theta_{p}: \text{ bending angle of the beam}$$

$$g: \text{ Lande's g-factor}$$

$$\gamma: \text{ gamma in special relativity}$$

$$\int_{a}^{D} \int_{a}^{D} \int_{a$$

34

Distribution of B(E1)

I. Poltoratska, PhD thesis

20

Excellent agreement between (p,p') and (γ , γ ') below $\sim S_n$

B(E1): low-lying discrete states

I. Poltoratska, PhD thesis

B(E1): GDR

Excellent agreement among three measurements in the GDR region

I. Poltoratska, PhD thesis

Excellent agreement with (γ, γ') below Sn, and with (γ, n) and (γ, abs) in the GDR region AT et al., PRL107, 062502(2011)

Electric Dipole Polarizability

Electric Dipole Response of ²⁰⁸Pb

Electric Dipole Response of ²⁰⁸Pb

Energy Weighted (TRK) Sum-Rule of ²⁰⁸Pb

Quasi-Deuteron Excitation Contribution?

Absorption of a photon by a virtual deuteron in nuclei.

The contribution is small but is included in the numbers. it is unclear whether it should be removed it for comparison with theoretical predictions.

(Electric) Dipole Polarizability

Neutron Skin Thickness of ²⁰⁸Pb

X. Roca-Maza et al. PRC88, 024316 (2013)

 $\Delta r_{np} = 0.165 \pm (0.009)_{\text{expt}} \pm (0.013)_{\text{theor}} \pm (0.021)_{\text{est}}$ fm for the estimated J=31 ± (2)_{est}

Neutron Skin Thickness of ²⁰⁸Pb

X. Roca-Maza et al., PRC88, 024316(2013)

Neutron Skin Thickness of ²⁰⁸Pb

X. Roca-Maza et al., PRC88, 024316 (2013) C.J. Horowitz et al., JPG41, 093001 (2014)

PDR strength

• Theoretical dependences of pygmy EWSR on J and L are determined using relativistic energy density functionals spanning the range of J and L values. Available experimental data provide constraints on theoretical models.

Similar approach but different theory \rightarrow A. Carbone et al, PRC 81, 041301(R) (2010)

Exp. Data: ⁶⁸Ni : O. Wieland et al, PRL 102, 092502 (2009) ^{132,130}Sn: A. Klimkiewicz et al., PRC 76, 051603 (R) (2007) ²⁰⁸Pb: I. Poltoratska et al., PRC 85, 041304 (R) (2012)

Courtesy of N. Paar

Determination of Symmetry Energy

Cluster Dipole Sum-Rule of PDR

Assuming that the PDR is formed by the dipole oscillation of the neutron skin against the other part (core), **PDR** core neutron skin Y. Alhassid, M. Gai and G.F. Bertsch, PRL49, 1482(1982) Cluster Dipole Sum-Rule H. Sagawa and M. Honma, PLB251,17(1990) R. de Diego, E. Garrido et al., PRC77, 024001 (2008) $60\frac{\left(Z_{s}A_{c}-Z_{c}A_{s}\right)^{2}}{AA_{s}A_{c}}$ ╋ $A_s, N_s, (Z_s = 0) \qquad A_c, N_c, (Z_c = Z)$ TRK: $60 \frac{NZ}{M}$ A, N, ZNumber of neutrons in the skin: N_s PREX 2% TRK $\rightarrow N_s$ (skin) ~ 12 antiprotonic atom ----p elastic scatt. (650 MeV) p elastic scatt. (295 MeV) R_n =5.66 and δR_{np} = 0.168±0.022 dipole polarizability 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 $\rightarrow N_s = 10.9 \pm 1.4$ Neutron Skin Thickness of 208Pb (fm) The numbers look consistent to each other

Electric Dipole Response of ²⁰⁸Pb

Dipole Polarizability of ¹²⁰Sn

T. Hashimoto et al., submitted

Dipole Polarizability of ¹²⁰Sn

T. Hashimoto et al., submitted

Dipole Polarizability of ¹²⁰Sn

PDR in ¹²⁰Sn A.M. Krumbholtz *et al.*, PLB744, 7(2015)

PDR in ¹²⁰Sn

A.M. Krumbholtz et al., PLB744, 7(2015)

(γ,γ'): B. Özel-Tashenov, *et al.*, PRC90, 024304(2014)

PDR in Deformed Nuclei: ¹⁵⁴Sm

A. Krugmann et al. in the INPC2014 Proceedings

Gamma Strength Function: ⁹⁶Mo D. Martin et al.

Summary

- Electric dipole response of ²⁰⁸Pb and ¹²⁰Sn have been precisely measured. Proton inelastic scattering was used as an electro-magnetic probe (relativistic Coulomb excitation).
- Electric dipole polarizability (α_D) is sensitive to the difference between the proton and neutron distributions.
- α_D is clearly defined as the inversely energy weighted sum-rule of B(E1) with less ambiguity in the integration range and good convergence up to $E_x \sim 40$ MeV.
- The neutron skin thicknesses and the constraints on the symmetry energy parameters have been extracted with the help of mean field calculations.

 $\Delta R_{np} (^{208}\text{Pb}) = 0.165 \pm (0.009)_{\text{expt}} \pm (0.013)_{\text{theor}} \pm (0.021)_{\text{est}} \text{ fm}$ $\Delta R_{np} (^{120}\text{Sn}) = 0.148 \pm (0.034)_{\text{expt+thor}} \text{ fm}$

Spin-M1 Strength in ⁴⁸Ca and ²⁰⁸Pb J. Birkhan et al. submitted to PRL

Unit cross section (UCS)

Mirror states of γ -decay widths of ¹¹B/¹¹C were employed to deduce B(M1)_{IS}.

Summary

•The **dipole polarizability** of ²⁰⁸Pb has been precisely measured as $\alpha_D = 20.1 \pm 0.6 \text{ fm}^3/e^2$

•Constraint band on the symmetry energy parameters, *J* and *L*, has been extracted with a help of mean-field calculations.

•The picture of **neutron-skin oscillation of PDR** is not inconsistent with the prediction of **cluster dipole sum-rule** with the measured neutron skin thickness.

•The *pn* spin correlation function has been extracted from the measured IS/ IV spin-M1 matrix elements for N=Z even-even nuclei. The function is expected to be sensitive to the ground state tensor correlation.

•Theoretical (e.g. ab. initio type calc.) prediction of mass/isospin dependence of *pn* spin correlation function is quite interesting. $\langle \vec{S}_n \cdot \vec{S}_p \rangle$

•CAGRA+GR http://www.rcnp.osaka-u.ac.jp/Divisions/np1-a/GRFBL/