Constraining (n,y) reaction cross sections for astrophysical applications

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

National Science Foundation Michigan State University

Overview

R-process nucleosynthesis
 Uncertainties

 Neutron capture rates

• Experiment

- Results
- Future plans

National Science Foundation Michigan State University

Nucleosynthesis paths

National Science Foundation Michigan State University

Open questions: What is the site of the r-process?

Credit: Erin O'Donnell, MSU

Core Collapse Supernova?

Neutron Star Merger?

National Science Foundation Michigan State University

r-process calculations

• Abundance pattern is different for the different astrophysical scenarios.

- Does one of them reproduce
- the observed abundances best?
- Why can't we tell?

National Science Foundation Michigan State University M. Mumpower, J. Cass, G. Passucci, R. Surman, A. Aprahamian, AIP Adv. 4, 041009 (2014)

r-process

National Science Foundation Michigan State University

Nuclear Physics Uncertainties: (n,γ)

Michigan State University

Current (n, γ) measurements

National Science Foundation Michigan State University

Neutron Capture – Uncertainties

Traditional Oslo method

- Reaction based
- Applicable close to stability
- Populate the compound nucleus of interest through a transfer or inelastic scattering reaction
- \succ Extract level density and γ -ray strength function
- >Calculate "semi-experimental" (n, γ) cross section
- > Excellent agreement with measured (n, γ) reaction cross section

- Populate the compound nucleus via β-decay (large Q-value far from stability)
- Spin selectivity correct for it
- \bullet Extract level density and $\gamma\text{-}ray$ strength function
- Advantage: Can reach (n,γ) reactions where beam intensity is 1 pps.

Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

National Superconducting Cyclotron Lab

Summing NaI - SuN

$$E_x = E_{\gamma 1} + E_{\gamma 2} + E_{\gamma 3} + E_{\gamma 4} + \dots$$

16x16 inch
45 mm borehole
2 pieces
8 segments
24 PMTs
Efficiency > 85% for 1 MeV

A. Simon, S.J. Quinn, A.S., et al., Nucl. Instr. Meth A 703, 16 (2013)

National Science Foundation Michigan State University

Proof-of-principle: $^{75}Ge(n,\gamma)^{76}Ge$

z	73Se 7.15 H 8: 100.00%	74Se STABLE 0.89%	75Se 119.79 D 8: 100.00%	76Se STABLE 9.37%	77Se STABLE 7.63%	785e STABLE 23.77%	79Se 2.95E+5 Υ β-: 100.00%	80Se STABLE 49.61% 2β-	81Se 18.45 Μ β-: 100.00%
33	72As 26.0 H 8: 100.00%	73As 80.30 D 8: 100.00%5	74As 17.77 D ε: 66.00% β-: 34.00%	75A2 STABLE 10075	76A≗ 1.0942 D β-: 100.00%	77A≗ 38.83 H β-: 100.00%5	78As 90.7 M β-: 100.00%	79As 9.01 M β-: 100.00%	80Αs 15.2 S β-: 100.00%
32	71Ge 11.43 D 8: 100.00%	72Ge STABLE 27.45%	730e STABLE 7.75%	74Ge STABLE 36.50%	75Ge 82.78 M β-: 100.00%	76Ge STABLE 1.73%	77Ge 11.30 H β-: 100.00% β ⁻	78Ge 88.0 Μ β-: 100.00%	79Ge 18.98 S β-: 100.00%
31	70Ga 21.14 M β-: 99.59% 8: 0.41%	71Ga STABLE 39.892%	72Ga 14.10 H β-: 100.00%	73Ca 4.86 H β-: 100.00%	74Ga 8.12 M β-: 100.00%	γ 750a 126 S β-: 100.00%	760a 32.6 S β-: 100.00%	77Ga 13.2 S β-: 100.00%	78Ga 5.09 S β-: 100.00%
30	69Zn 56.4 M β-: 100.00%	70Zn ≥2.3E+17 Y 0.61% 2β-	712n 2.45 M β-: 100.00%	72Zn 46.5 H β-: 100.00%	73Zn 23.5 S β-: 100.00%	742n 95.6 S β-: 100.00%	752n 10.2 S β-: 100.00%	762n 5.7 S β-: 100.00%	77Zn 2.08 S β-: 100.00%
	39	40	41	42	43	44	45	46	N

⁷⁶Ga:
$$T_{1/2} = 32.6 \text{ s}$$

 $Q_{\beta} = 7.0 \text{ MeV}$
 $S_n (^{76}\text{Ge}) = 9.4 \text{ MeV}$

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Proof-of-principle: $^{75}Ge(n,\gamma)^{76}Ge$

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Proof-of-principle: $^{75}Ge(n,\gamma)^{76}Ge$

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Results: ${}^{75}Ge(n,\gamma){}^{76}Ge$

National Science Foundation Michigan State University Spyrou, Liddick, Larsen, Guttormsen, et al, PRL2014

Weak r-process measurements

Summary and Applicability

- Delayed neutron emission

National Science Foundation Michigan State University

Collaboration

Michigan State University

- B. Crider
- S.N. Liddick
- K. Cooper
- A.C. Dombos
- R. Lewis
- D.J. Morrissey
- F. Naqvi
- C. Prokop
- S.J. Quinn
- A. Rodriguez
- C.S. Sumithrarachchi
- R.G.T. Zegers

University of Oslo

- A.C. Larsen
- M. Guttormsen
- T. Renstrøm
- S. Siem
- L. Crespo-Campo

Central Michigan University

• G. Perdikakis

<u>Notre Dame</u>

• A. Simon

Los Alamos National Lab

- A. Couture
- S. Mosby

- Lawrence Livermore National Lab
 - D.L. Bleuel
 - Lawrence Livermore National Laboratory

A. C. L. and M. G. acknowledge financial support from the Research Council of Norway, project grant no. 205528. This work was supported by the National Science Foundation under Grants No. PHY 102511, and No. PHY 0822648, and PHY 1350234.

NSCL