α clustering and its connection to the $E1$ response of heavy nuclei

Mark Spieker1,*, Sorin Pascu1,2, and Andreas Zilges1

1Institute for Nuclear Physics, University of Cologne, Germany
2Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania

COMEX5
Krakow (Poland)

Supported by the DFG (ZI 510/4-2)

Special thanks to Francesco Iachello

*Supported by the Bonn-Cologne Graduate School of Physics and Astronomy
The nuclear $E1$ response

$E1$ strength due to isospin-symmetry breaking

GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)

PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)

The nuclear $E1$ response

$E1$ strength due to isospin-symmetry breaking

... are there more generating mechanisms?

GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)
PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)
Isospin-symmetry breaking in atomic nuclei

Low-lying $E1$ strength due to isospin-symmetry breaking

[F. Iachello, PLB 160, 1 (1985)]

Two components:

- Quadrupole-octupole coupling (static/dynamic)
- α-clustering mode

[F. Iachello, PLB 160, 1 (1985)]
Is clustering a general phenomenon in nuclei?

[D. J. Marín-Lámbarri et al., PRL 113, 012502 (2014)]

[12C]

[J.-P. Ebran et al., Nature 487, 341 (2012)]

[J.-P. Ebran et al., PRC 90, 054329 (2014)]

[Pictures: M. Freer/University of Birmingham]

M. Spieker, University of Cologne, AG Zilges

α clustering and the E1 response of heavy nuclei
Low-lying $E1$ strength in rare-earth nuclei

(combined experimental efforts of Stuttgart, Giessen, Köln, and Darmstadt in ‘80s and ‘90s)

- **Nuclear resonance fluorescence** (NRF) using Stuttgart and Darmstadt setups
- Most selective probe to study dipole strength
- **Complete dipole strength** between 0.8 – 4.1 MeV
- **Parity measurements** using Compton polarimeters
 → Parity of strongly excited states accessible ($E1$ or $M1$ excitation?)
- **γ-decay branching** of strongly excited states
 → K quantum number assignment ($\Delta K=0$ or $\Delta K=1$ excitation?)

Large experimental data base!

[C. Fransen et al., PRC 57, 129 (1998)]
Low-lying $E1$ strength in rare-earth nuclei

$E1$ strength in rare-earth nuclei
(combined experimental efforts of Stuttgart, Giessen, Köln, and Darmstadt in ‘80s and ‘90s)

- **Nuclear resonance fluorescence** (NRF) using Stuttgart and Darmstadt setups
- Most selective probe to study dipole strength
- **Complete dipole strength** between 0.8 – 4.1 MeV
- **Parity measurements** using Compton polarimeters
 \[\rightarrow \text{Parity of strongly excited states accessible (E1 or M1 excitation?)} \]
- **γ-decay branching** of strongly excited states
 \[\rightarrow \text{K quantum number assignment ($\Delta K=0$ or $\Delta K=1$ excitation?)} \]

Large experimental data base!

[C. Fransen et al., PRC 57, 129 (1998)]
Isospin-symmetry breaking in atomic nuclei

Low-lying $E1$ strength due to isospin-symmetry breaking

[F. Iachello, PLB 160, 1 (1985)]

Two components:
- Quadrupole-octupole coupling (static/dynamic)
- α-clustering mode

How to describe these two modes with one “simple” model?
Clustering in atomic nuclei – $U(\nu+1)$

Theoretical description of cluster configurations

- Cluster states can be explained by the algebra of $U(\nu+1)$, e.g., 12C and 16O!
- $\nu = 3n-3$, where $n =$ #clusters

 [R. Bijker, F. Iachello, PRC 61, 067305 (2000)]
 [R. Bijker, F. Iachello, PRL 112, 152501 (2014)]

- $U(4)$ for two-body clusters
- $U(4)$ is the algebra of the sp interacting boson model

[12C]

[D. J. Marín-Lámbarri et al., PRL 113, 012502 (2014)]

[M. Freer/University of Birmingham]
Clustering in atomic nuclei – \(U(\nu+1) \)

Theoretical description of cluster configurations

- Cluster states can be explained by the algebra of \(U(\nu+1) \), *e.g.*, \(^{12}\text{C}\) and \(^{16}\text{O}\)!
- \(\nu = 3n-3 \), where \(n \) = number of clusters

 [R. Bijker, F. Iachello, PRC 61, 067305 (2000)]
 [R. Bijker, F. Iachello, PRL 112, 152501 (2014)]

- \(U(4) \) for two-body clusters
- \(U(4) \) is the algebra of the \(sp \) interacting boson model

\(\rightarrow \) *spdf* IBM to describe octupole mode and \(\alpha \)-clustering mode!

[D. J. Marín-Lámbarrí *et al.*, PRL 113, 012502 (2014)]

[M. Freer/University of Birmingham]
The interacting boson model (IBM)

- Drastic truncation of the valence space in terms of bosons of different multipolarities, e.g., \(l = 0 - 3 \) (s, p, d, and f bosons)
- Description of collective nuclear properties in an algebraic approach

$E1$ strength in Nd isotopes

\[
\hat{T}(E1) = c_1 [\chi_{sp} (s^\dagger \tilde{p} + p^\dagger \tilde{s})^{(1)} + (p^\dagger \tilde{d} + d^\dagger \tilde{p})^{(1)} \\
+ \chi_{df} (d^\dagger \tilde{f} + f^\dagger \tilde{d})^{(1)}]
\]

First 1^- state:
- p-boson is responsible for parabolic evolution of the $E1$ strength!

[MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
E1 strength in Nd isotopes

^{142}Nd ^{144}Nd ^{146}Nd ^{148}Nd ^{150}Nd

Experimental data from:
[H.H. Pitz et al., NPA 509, 587 (1990)]
[H. Friedrichs et al., PRC 45, 892(R) (1992)]
[T. Eckert et al., PRC 56, 1256 (1997)]
[ENSDF, 2015]

IBM Results:
[MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
E1 strength in Nd isotopes

Experimental data from:
- H.H. Pitz et al., NPA 509, 587 (1990)
- H. Friedrichs et al., PRC 45, 892(R) (1992)
- T. Eckert et al., PRC 56, 1256 (1997)
- ENSDF, 2015

IBM Results:
- M. S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)
E1 strength in Nd isotopes

Results:
- Good agreement with experimental data for almost all known low-lying 1^- states (strength and centroid energy)
- Strong p-boson states are observed ($n_p/n_f > 1$)

Experimental data from:
- [H.H. Pitz et al., NPA 509, 587 (1990)]
- [H. Friedrichs et al., PRC 45, 892(R) (1992)]
- [T. Eckert et al., PRC 56, 1256 (1997)]
- [ENSDF, 2015]

IBM Results:
- [MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]
E1 strength in other rare-earth nuclei

- **Experimental data from:**
 - [W. Ziegler et al., NPA 564, 366 (1993)]
 - [H.H. Pitz et al., NPA 492, 411 (1989)]
 - [J. Margraf et al., PRC 52, 2429 (1995)]
 - [ENSDF, 2015]

- **sd-IBM parameters for Dy:**
 - [E.A. McCutchan et al., PRC 69, 064306 (2004)]
 - (Gd parameters similar)

- **IBM Results:**
 - [MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]

Results:
- **spdf-IBM** is able to describe the low-lying *E1* strength in rare-earth nuclei!
- **U(4), i.e., two-body cluster,** plays a crucial role!
Neutron-deficient rare earths – Ba isotopes

M. Spieker, University of Cologne, AG Zilges

\[^{134}\text{Ba} \quad ^{136}\text{Ba} \]

\[J^\pi = 1^- \text{ or } \Delta K = 0 \quad J = 1 \]

\[\text{B(E1)} \uparrow \left[10^{-3} \text{ e}^{2}\text{fm}^2 \right] \]

\[\frac{n_p}{n_f} \]

Energy [keV] \hspace{2cm} Energy [keV]

\[1000 \quad 2000 \quad 3000 \quad 4000 \quad 5000 \]

\[1 \quad 2 \quad 2 \quad 2 \quad 1 \]

\[0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \]

\[10^0 \quad 10^2 \]

\[\text{B(E1)}_{\text{exp}} \left[10^{-3} \text{ e}^{2}\text{fm}^2 \right] \]

Neutron Number N

80 \hspace{0.5cm} 84 \hspace{0.5cm} 88 \hspace{0.5cm} 92 \hspace{0.5cm} 96

\[\text{sd-IBM parameters: [S. Pascu et al., PRC 81, 054321 (2010)]} \]

\[\alpha \text{ clustering and the } E1 \text{ response of heavy nuclei} \]

\[\text{ENSDF, 2015} \]

\[\text{C. Fransen et al., PRC 57, 129 (1998)} \]
Neutron-deficient rare earths – Ba isotopes

134,136Ba

$B(E1)$ vs. Energy [keV]

$B(E1) \uparrow [10^{-3} e^2 fm^2]$

$J^\pi=1^+$ or $\Delta K = 0$

$J=1$

$\frac{n_p}{n_f}$

ENSDF, 2015

sd-IBM parameters: [S. Pascu et al., PRC 81, 054321 (2010)]

α clustering and the $E1$ response of heavy nuclei

M. Spieker, University of Cologne, AG Zilges
The nuclear $E1$ response

$E1$ strength due to isospin-symmetry breaking

$\text{GDR: M.N. Harakeh, A. van der Woude, Giant Resonances, Oxford University Press (2001)}$
$\text{PDR: D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)}$

... are there more generating mechanisms?
... is there a cluster component in the PDR?
α clusters and the PDR?

... is there a cluster component in the PDR?

Experimental Data:
[A. Jung et al., NPA 584, 103 (1995)]
[C. Romig et al., PRC 88, 044331 (2013)]
[S. Volz et al., NPA 779, 1 (2006)]

[see also: S. Pascu et al., PRC 85, 064315 (2012)]
α clusters and the PDR?

\[\frac{d\sigma}{d\Omega} \text{ [mb/s]} \]

\[B(E1) \text{ [10}^{-3} \text{ e}^2 \text{fm}^2] \]

\[n_p/n_f \]

\[J^T = 1^- \]

\[J = 1 \]

[S. Volz et al.]
[B. Löher et al.]

\[^{140}\text{Ce} \]

\[\alpha, \alpha', \gamma \]

\[\gamma, \gamma' \]

[ppnp 70, 210 (2013)]

[D. Savran, T. Aumann, and A. Zilges, PPNP 70, 210 (2013)]
Experimental identification?

208Pb

$\sigma_{(d,p)}$ [µb]

$B(E1) \uparrow$

$[10^{-3} e^2$ fm$^2]$}

$\frac{d\sigma}{d\Omega}$ [mb/sr]

Energy [keV]

(d,p): M. Spieker et al., to be published

(p,p$'$): I. Poltoratska et al., PRC 85, 041304(R) (2012)

(17O,17O$'$): F.C.L Crespi et al., PRL 113, 012501 (2014)

L. Pellegrin et al., PLB 738, 519 (2014)

(α,\xspaceα'): J. Endres et al., PRL 105, 212503 (2010)

124Sn(α,$\alpha'\gamma$)

Rel. Str. 1

5-7 7-9 MeV

124Sn(17O,17O$'$)γ)

Rel. Str. 1

5-7 7-9 MeV

124Sn(γ,γ')

Rel. Str. 1

5-7 7-9 MeV

preliminary
Dipole α vibrations – a universal collective mode?

Centroid energy evolves smoothly as expected for a collective mode!

$E_x = 8.8(19) \cdot A^{-1/3} + 9.9(11) \cdot A^{-1/6}$

[M. Spieker et al., to be published]
Summary & open questions

- **Summary**
 - Possible signatures of an α-cluster
 - p-boson describes in a natural way parabolic behavior of $E1$ strength
 - Existence of cluster states in heavy nuclei possible!
 - Enhanced $E1$ transitions might serve as an indicator
 - [MS, S. Pascu, A. Zilges, and F. Iachello, PRL 114, 192504 (2015)]

- **Some open questions**
 - **Theory:**
 - Unambiguous correspondence of sp-IBM, *i.e.*, $U(4)$ with cluster configurations?
 - \[\rightarrow \text{Microscopic calculations including 4QP } a \text{ priori, } i.e., \alpha\text{-particles needed!} \]

 - **Experiment:**
 - Further experimental observables?
 - Parity of dipole states?
 - Link between deformed and spherical nuclei/connection with PDR?
 - Is there a mass dependence?

Connection of different modes?