Strength functions from large scale nuclear shell model and their applications in nuclear astrophysics

Kamila Sieja

Institut Pluridisciplinaire Hubert Curien, Strasbourg

The 5th international conference on COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS

14-18.09.2015

SM with empirical interactions: regions of activity

SM with empirical interactions: regions of activity

Neutron capture cross sections

$$\sigma_{(n,\gamma)}^{\mu\nu}(E_i,n) = \frac{\pi\hbar^2}{2M_{i,n}E_{i,n}} \frac{1}{(2J_i^{\mu}+1)(2J_n+1)} \sum_{J,\pi} (2J+1) \frac{T_n^{\mu}T_{\gamma}^{\nu}}{T_{tot}},$$

where:

 $E_{i,n}, M_{i,n}$ - center-of-mass energy, reduced mass of the system $J_n = 1/2$ -neutron spin transmission coefficients: $T_n^{\mu} = T_n(E, J, \pi; E_i^{\mu}, J_i^{\mu}, \pi_i^{\mu}) T_{\gamma}^{\nu} = T_{\gamma}(E, J, \pi; E_m^{\nu}, J_m^{\nu}, \pi_m^{\nu})$

For a given multipolarity

$$T_{XL}(E, J, \pi, E^{\nu}, J^{\nu}, \pi^{\nu}) = 2\pi E_{\gamma}^{2L+1} f_{XL}(E, E_{\gamma})$$

Key ingredients in Hauser-Feschbach calculations:

- description of gamma emission spectra of a compound nucleus
- Brink-Axel hypothesis

Lanczos strength function method

$$S = |\hat{O}|\psi_i\rangle| = \sqrt{\langle \psi_i|\hat{O}^2|\psi_i\rangle}$$

The operator \hat{O} does not commute with H and $\hat{O}|\psi_i\rangle$ is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates:

$$\hat{O}|\psi_i\rangle = \sum_f \mathcal{S}(E_f)|E_f\rangle,$$

where $S(E_f) = \langle E_f | \hat{O} | \psi_i \rangle$ is called strength function.

If we carry Lanczos procedure using $|O\rangle = \hat{O}|\psi_i\rangle$ as initial vector then *H* is diagonalized to obtain eigenvalues $|E_f\rangle$ and after N iterations we have the also the strength function: $\tilde{S}(E_f) = \langle E_f | O \rangle = \langle E_f | \hat{O} | \psi_i \rangle$.

How good is the strength function \tilde{S} after N iterations compared to the exact one S?

Lanczos strength function method

$$S = |\hat{O}|\psi_i\rangle| = \sqrt{\langle \psi_i|\hat{O}^2|\psi_i\rangle}$$

The operator \hat{O} does not commute with H and $\hat{O}|\psi_i\rangle$ is not necessarily the eigenstate of the Hamiltonian. But it can be developed in the basis of energy eigenstates:

$$\hat{O}|\psi_i\rangle = \sum_f S(E_f)|E_f\rangle,$$

where $S(E_f) = \langle E_f | \hat{O} | \psi_i \rangle$ is called strength function.

If we carry Lanczos procedure using $|O\rangle = \hat{O}|\psi_i\rangle$ as initial vector then *H* is diagonalized to obtain eigenvalues $|E_t\rangle$ and after N iterations we have the also the strength function: $\tilde{S}(E_t) = \langle E_t | O \rangle = \langle E_t | \hat{O} | \psi_i \rangle$.

How good is the strength function \tilde{S} after N iterations compared to the exact one S?

Impact of the realistic M1 fragmentation on the neutron capture cross sections

M1 microscopic strength functions in iron chain (53 Fe- 70 Fe), impact on (n, γ) cross sections, tests of Brink-Axel hypothesis

H.-P. Loens K. Langanke, G. Martinez-Pinedo and K. Sieja, EPJ A48 (2012) 48

- State-by-state cross section 2 times larger than using Brink hypothesis
- Using SF of 2⁺ state instead of 0⁺ leads to larger cross sections

Impact of the realistic M1 fragmentation on the neutron capture cross sections

- State-by-state cross section 2 times larger than using Brink hypothesis
- Using SF of 2⁺ state instead of 0⁺ leads to larger cross sections

Low energy enhancement of the γ -strength function

Gamma energy (MeV)

- Microscopic strength functions are different from global parametrizations
- Low energy enhancement of γ-strength observed in different regions of nuclei
- It can influence the (n, γ) rates of the r-process by a factor of 10!

A.C. Larsen and S. Goriely, Phys. Rev. C82 (2010) 014318

 Evidence for the dipole nature of low energy enhancement in ⁵⁶Fe

A. C. Larsen et al., Phys. Rev. Lett. 111 (2013) 242504

What theory says about it?

E. Litvinova and N. Belov, Phys. Rev. C88 (2013) 031302R

- Thermal continuum QRPA calculations
- Enhancement due to transitions between thermally unblocked s.p. states and the continuum
- Note the difference between T = 0 (ground state) and T > 0 (excited state) E1 strength distribution

R. Schwengner et al., PRL111 (2013) 232504

- Shell model transitions between a large amount of states
- Enhancement due to the M1 transitions between states in the region near the quasicontinuum
- A general mechanism to be found throughout the nuclear chart B.A. Brown and A.C. Larsen., PRL113 (2014) 252502

SM calculations in ^{44,46}Ti nuclei

16₀

PURPOSE: Obtain M1/E1/(E2) SF within the same framework

- Full *fp*-calculations for positive parity states
- Full 1*ħ*ω calculations for negative parity states- all 1p-1h excitations from *sd* and to *gds* shells
 Exact removal of spurious COM states
- *H_{SM}* =

 $\sum_{i} \varepsilon_{i} c_{i}^{\dagger} c_{i} + \sum_{i,j,k,l} V_{ijkl} c_{i}^{\dagger} c_{j}^{\dagger} c_{l} c_{k} + \beta_{c.m.} H_{c.m.}$

- All positive parity states below 16MeV (spins 0-11)
- in ⁴⁴Ti, 100-350 negative parity states per spin (from 0 to 11)

SM calculations in ^{44,46}Ti nuclei

M1 calculations in ⁴⁶Ti

M1/E1 calculations in ⁴⁴Ti

Kamila Sieja (IPHC)

Summary

- SM Lanczos strength function is a powerful tool for obtaining low energy distributions for transition (GT, M1, E1, ...) operators
- Using microsopic strength functions instead of global parameterizations influences the calculated cross sections
- The low energy enhancement of M1 γ-strength functions is found in ^{46,44}Ti isotopes, as was found before in other regions
- E1 strength from SM in ⁴⁴Ti is obtained. It seems to have a different behavior, with no low energy upbend
- Further calculations necessary:
 - other nuclei
 - reason for M1 enhancement

- ...