

HPCI project field 5 "The origin of matter and the universe"

2015/09/15 COMEX5 at Krakow

Large-scale shell model calculations on E1 spectra of medium-heavy nuclei

CENTER *for* NUCLEAR STUDY Noritaka SHIMIZU CNS, University of Tokyo

1

T. Otsuka (Tokyo U.) T. Togashi (CNS, Tokyo), Y. Utsuno (JAEA/CNS), S. Ebata (MeMe Hokkaido), and M. Honma (Aizu U.)

Introduction

• Giant Dipole Resonance (GDR) and Pygmy Dipole Resonance (PDR) have been studied intensively by RPA, QRPA, phonon model, ...

e.g. Inakura (2011), Hartmann et al. (2004), ...

- Neutron skin, EoS, symmetry energy
 - e.g. Reinhard Nazarewics (2012), Klimkiewiz *et al.* (2007), Colo (2008), ...
- PDR: single-particle excitation vs. collective excitation?

• A few studies by shell model (SM) calc. in medium-heavy nuclei

purpose

Schwengner Brown (2010), Sagawa Suzuki (1999), K. Sieja (2013), ...

Large-scale shell model (LSSM) calculations and Monte Carlo shell model (MCSM) for GDR/PDR in medium-heavy nuclei with including various many-body correlations

A successful example of shell-model calc. (MCSM): Neutron-rich Ni isotopes and shell evolution

Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma and Y. Utsuno, PRC 89, 031301(R) (2014)

Strength function in shell model

- In principle, the shell model is quite useful for describing high excited states.
- E1 excitation causes parity change. 3-major-shell model space (1ħω) is required unlike M1 and Gamow-Teller transitions (0ħω SM).
- In practice, direct diagonalization with the Lanczos method or MCSM cannot be applicable to high excited states because of high level density.
- Methods
 - Lanczos strength function method
 - E1 excitation of Ca isotopes
 - New extension of Monte Carlo shell model for strength function

Model space and effective int. for Ca isotopes

- Model space
 - full sd-pf-sdg shell
- 1ħω truncation
 - 0ħω for natural parity state
 - $1\hbar\omega$ for unnatural parity state
 - \bigstar Full correlation inside pf-shell

• (1+3)ħω truncation

effective interaction

ullet

- (0+2)ħ ω for natural parity state
- (1+3)ħ ω for unnatural parity state

1ħω : 4.1x10⁶ M-scheme dim. for ⁴⁸Ca at PC
(1+3)ħω : <u>1.2x10¹⁰</u> M-scheme dim.
parallel code (KSHELL) + supercomputer

smeared by Lorentzian $\Gamma = 1 MeV$ bare effective charge subtracting CoM

USD+GXPF1B+VMU Utsuno *et al.*, PTPS 196, 304 (2012) shell gaps and 3⁻ states of Ca isotopes

$$(e_{\pi}, e_{\nu}) = \left(\frac{N}{A}e, -\frac{Z}{A}e\right)$$

Lanczos strength-function method for E1 excitation spectrum

often used for Gamow-Teller transitions Ref. R.R.Whitehead Phys. Lett. B 89, 313 (1980)

$$|\varphi_0(1^-)\rangle = O(E1)|0_1^+\rangle$$

ground state

Lanczos iteration using $|\varphi_0(1)\rangle$ as an initial state. (doorway state)

diagonalize the matrix in the Krylov subspace, $\left\{ H^n | \varphi_0 \rangle, H^{n-1} | \varphi_0 \rangle, ..., H^1 | \varphi_0 \rangle, | \varphi_0 \rangle \right\}$

to obtain approximated states $\{\phi_0\rangle, |\phi_1\rangle, |\phi_2\rangle, ..., |\phi_{n+1}\rangle\}$ in the same way as Lanczos method.

Smoothing with Lorentz distribution

$$L(x, x_0, \Gamma) = \frac{1}{\pi} \frac{\gamma}{(x - x_0)^2 + \gamma^2}$$

with $\gamma = \Gamma/2$. $\Gamma = 1.0 \text{MeV}$

Good distribution obtained in a few hundred Lanczos iterations

Lawson method is used for the removal of contamination of spurious mass motion

Concept of Lanczos strength function method

Convergence of strength distribution

E1 excitation of Ca isotopes in LSSM

NS, Y. Utsuno, S. Ebata, T. Otsuka, M. Honma and T. Mizusaki, in preparation

photoabsorption cross section of Ca isotopes including odd nuclei

Low-energy region (1ħω)

Dashed lines : 42Ca – 49Ca Solid lines : 50Ca – 59Ca

RPA: Cb-TDHFB by S. Ebata, 5fm 3D sphere, 1fm mesh

Beyond 3ħω truncation and toward heavier region by Monte Carlo shell model (MCSM)

Very brief outline of MCSM

Efficient description of nuclear many-body states based on the • basic picture of nuclear structure = intrinsic state + rotation + superposition $|\varphi(D^{(d)})\rangle = \prod_{\alpha=1}^{N} \left(\sum_{i=1}^{N_{sp}} c_i^{\dagger} D_{i\alpha}^{(d)}\right) - \rangle$ $|\Psi^{IM\pi}(N_b)\rangle = \sum f^{(d)} \sum g_K^{(d)} \hat{P}^{\pi} \hat{P}^I_{MK} |\varphi(D^{(d)})\rangle$ MCSM basis dimension ≈ 100 projection onto good optimized Slater superposition quantum numbers determinant mixing with different shapes rotation deformed intrinsic state + *f*⁽³⁾ Wave function = $f^{(1)}$ $+ f^{(2)}$ +

 $D^{(d)}$: determined stochastically and variationally

Ref. T. Otsuka, T. Togashi, N. Shimizu et al.

Concept to describe E1 spectrum with MCSM

E1 operator
$$E1 = \sqrt{\frac{3}{4\pi}} \sum_{i=1}^{A} e_i \vec{r_i}$$
 $e_i = N / A \text{ (proton)}, -Z / A \text{ (neutron)}$
We introduce an exponential of one-body operator.

$$\exp(i\varepsilon \cdot E1) \equiv \exp(i\varepsilon \cdot \sum_{i=1}^{A} e_i(x_i + y_i + z_i))$$

We consider the following type of states:

$$|\varphi_{i}^{E1}\rangle = \exp(i\varepsilon \cdot E1)|\varphi_{i}^{g.s.}\rangle$$
 basis vectors to represent
E1 excited states (*i*, ε)

Slater determinant - Slater determinant

Although this was a good idea, it is still too naïve to use this kind of states as the basis vectors for E1 spectrum.

Decomposition of exp(*ie • E1*) operator

The *E1* operator is decomposed so as to treat transitions between different sets of orbits separately:

E1 excitation spectrum can be calculated by MCSM

(confirmed by E1 sum rule)

Overview of description of E1 spectrum with MCSM

Step1. The ground state is solved by <u>MCSM</u>.

$$|\Psi(g.s.)\rangle = \sum_{i} f_{i} |\varphi_{i}^{g.s.}\rangle$$

Ex

Step2. Basis vectors for *E1* spectrum are generated by acting $exp(i\epsilon \cdot E1(a \rightarrow b))$, $exp(i\epsilon \cdot E1(c \rightarrow d))$, ...on basis vectors of the ground state.

$$\exp(i\varepsilon \cdot E1(a \to b)) |\varphi_i^{g.s.}\rangle, \exp(i\varepsilon \cdot E1(c \to d)) |\varphi_i^{g.s.}\rangle, \dots$$

Step3. More basis vectors are generated by the variation for the basis vectors of step2. Diagonalize H by all basis vectors.

 $\exp(i\varepsilon \cdot E1(a \to b)) | \varphi_i^{g.s.} \rangle \xrightarrow{\text{Variational shift by}} | \varphi_i(E1(a \to b))^{Var} \rangle$

Step4. Low-energy *E1* excited states are solved independently by "normal" MCSM and are added to the spectrum.

Photo absorption cross section is calculated

$$\sigma(E) [\text{fm}^{2}] = \frac{16\pi^{3}}{9} \frac{e^{2}}{\hbar c} \sum_{J_{n}^{f}} \frac{1}{\pi} \frac{\gamma}{(E - Ex(J_{n}^{f}))^{2} + \gamma^{2}} \cdot Ex(J_{n}^{f}) \cdot \underline{B(E1; J^{i} \to J_{n}^{f})}.$$
Excitation energy of n-th *E1* excited state

Concept of Lanczos strength function method

E1 excitation described by Monte Carlo shell model

Photoabsorption cross section of ⁸⁸Sr, ⁹⁰Sr T. Togashi, T. Otsuka *et al.*

Results of Se (Z=34) isotopes

- Model space:	- Effective Hamiltonian: *SDPF-MU (sd-pf) + V _{MU} (others)
sd - pf - sdg - 0h _{11/2}	(central force scaled by 0.35)
(4 major shell)	*Y. Utsuno <i>et.al.,</i> PRC86, 051301(R) (2012)

<u>Photoabsorption cross section</u> σ_{abs} of ⁷⁶Se (N=42), ⁷⁸Se (N=44), ⁷⁹Se(N=45)

<u>300 bases</u> are used to describe *E1* spectrum as preliminary calculation.

Summary

- Lanczos strength function in LSSM
 - E1 of Ca isotopes with LSSM
 - GDR (1+3) $\hbar\omega$ essential, higher $\hbar\omega$ configuration
 - PDR 1ħω enough
 - odd nuclei are feasible : Ca isotopes, ⁵¹V
 - PDR enhancement in ⁵²Ca-⁶⁰Ca
 - PDR is on the tail of GDR
 - rY⁽¹⁾ reduced matrix elements
- Monte Carlo shell model for strength function
 - construct J^{π} -projected subspace spanned by E1-excited Slater determinants
 - feasibility tested, odd nuclei are feasible
 - undergoing application to systematic studies and LLFP nuclides