Large-scale shell model calculations on E1 spectra of medium-heavy nuclei

Noritaka SHIMIZU
CNS, University of Tokyo

T. Otsuka (Tokyo U.) T. Togashi (CNS, Tokyo),
Y. Utsuno (JAEA/CNS), S. Ebata (MeMe Hokkaido),
and M. Honma (Aizu U.)
Introduction

- Giant Dipole Resonance (GDR) and Pygmy Dipole Resonance (PDR) have been studied intensively by RPA, QRPA, phonon model, ...

 e.g. Inakura (2011), Hartmann et al. (2004), ...

- Neutron skin, EoS, symmetry energy

 e.g. Reinhard Nazarewics (2012), Klimkiewiz et al. (2007), Colo (2008), ...

- PDR: single-particle excitation vs. collective excitation?

- A few studies by shell model (SM) calc. in medium-heavy nuclei

 Schwengner Brown (2010), Sagawa Suzuki (1999), K. Sieja (2013), ...

purpose

Large-scale shell model (LSSM) calculations and Monte Carlo shell model (MCSM) for GDR/PDR in medium-heavy nuclei with including various many-body correlations
A successful example of shell-model calc. (MCSM): Neutron-rich Ni isotopes and shell evolution

Strength function in shell model

• In principle, the shell model is quite useful for describing high excited states.

• E_1 excitation causes parity change. 3-major-shell model space ($1\hbar\omega$) is required unlike $M1$ and Gamow-Teller transitions ($0\hbar\omega$ SM).

• In practice, direct diagonalization with the Lanczos method or MCSM cannot be applicable to high excited states because of high level density.

• Methods
 – Lanczos strength function method
 • E_1 excitation of Ca isotopes
 – New extension of Monte Carlo shell model for strength function
Model space and effective int. for Ca isotopes

- Model space:
 - full \(sd\)-pf-sdg shell

- \(1\hbar\omega\) truncation:
 - \(0\hbar\omega\) for natural parity state
 - \(1\hbar\omega\) for unnatural parity state
 - Full correlation inside pf-shell

- \((1+3)\hbar\omega\) truncation:
 - \((0+2)\hbar\omega\) for natural parity state
 - \((1+3)\hbar\omega\) for unnatural parity state

- Effective interaction:
 - USD+GXPF1B+VMU
 - Utsuno et al., PTPS 196, 304 (2012)
 - Shell gaps and \(3^-\) states of Ca isotopes

\[e_A \approx \sqrt{\frac{N}{A} e - \frac{Z}{A} e} \]
Lanczos strength-function method for E1 excitation spectrum

often used for Gamow-Teller transitions

\[|\varphi_0(1^-) > = O(E1) |0^+ _1> \]

\[\text{ground state} \]

Lanczos iteration using \(|\varphi_0(1^-)> \) as an initial state. (doorway state)

diagonalize the matrix in the Krylov subspace, \(\{ H^n \varphi_0 >, H^{n-1} \varphi_0 >, \ldots, H^1 \varphi_0 >, \varphi_0 > \} \)

to obtain approximated states \(\{ \phi_0 >, \phi_1 >, \phi_2 >, \ldots, \phi_{n+1} > \} \) in the same way as Lanczos method.

Smoothing with Lorentz distribution
\[I(x, x_0, \Gamma) = \frac{1}{\pi} \frac{\gamma}{(x - x_0)^2 + \gamma^2} \]

with \(\gamma = \Gamma / 2 \), \(\Gamma = 1.0 \text{MeV} \)

Good distribution obtained in a few hundred Lanczos iterations

Lawson method is used for the removal of contamination of spurious mass motion
Concept of Lanczos strength function method

|\(\varphi_0 \rangle \) \quad \leftarrow \quad |\varphi_0(1^-)\rangle = O(E1) \ |0^+\rangle

\(|\varphi_1\rangle \) \quad \leftarrow \quad |\varphi_1\rangle = H |\varphi_0\rangle

\(|\varphi_2\rangle \) \quad \leftarrow \quad |\varphi_2\rangle = H |\varphi_1\rangle

\ldots

\(|\varphi_n\rangle \) \quad \leftarrow \quad |\varphi_k\rangle : \text{basis vectors huge in } M\text{-scheme}

10^{10} \text{ dim. } \Rightarrow 80\text{GB} / \text{a vector}

1 \leq k \leq n, \ n \sim 300
Convergence of strength distribution

$|\varphi_0 (1^-) > = O(E1)|0^+ >$

\[\Gamma = 1 \text{MeV} \]

1 iter.

\[\sigma \text{[mb]} \]

\[Ex. \text{[MeV]} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \]

100 iter.

\[\sigma \text{[mb]} \]

\[Ex. \text{[MeV]} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \]

300 iter.

\[\sigma \text{[mb]} \]

\[Ex. \text{[MeV]} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \]

1,000 iter.

\[\sigma \text{[mb]} \]

\[Ex. \text{[MeV]} \]

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \quad 25 \quad 30 \quad 35 \quad 40 \]
E1 excitation of Ca isotopes in LSSM

NS, Y. Utsuno, S. Ebata, T. Otsuka, M. Honma and T. Mizusaki, in preparation

1hw/3hw sd-pf-sdg shell calculations for negative-parity states of Ca isotope to describe E1 excitations

SM calc. well reproduce exp.
GDP peak position and width

- GDR \((1+3)\hbar\omega\) essential
- Ex. < 15MeV \(1\hbar\omega\) enough

“Lanczos strength function method”

Photoabsorption cross section \(^{48}\text{Ca} 1\hbar\omega\)

1hw : upto 1hw excitation in sd-pr-sdg shell
\(4.1\times10^6\) M-scheme dim.

at PC

(1+3)hw: up to 3hw excitation in sd-pf-sdg shell
\(1.2\times10^{10}\) M-scheme dim.

at supercomputer
photoabsorption cross section of Ca isotopes including odd nuclei

Low-energy region \((1\hbar\omega)\)

\(\sigma\) (mb)

Ex. (MeV)

\(\sigma\) (mb)

Ex. (MeV)

SM calc. well reproduce exp. GDP peak position and width

- GDR \((1+3)\hbar\omega\) essential
- Ex. < 15MeV \(1\hbar\omega\) enough

RPA: Cb-TDHF by S. Ebata, 5fm 3D sphere, 1fm mesh
$rY^{(1)}$ matrix element for neutron

$$B(E1) = \left(e_{t_z} \sum_{i,j} \langle \text{g.s.} \left| rY^{(1)}(i,j,tz) \right| 1^- \rangle \right)^2$$

stretched orbital pairs contribute
GDR: constructive
PDR: destructive

PDR state

|PDR⟩ ... large B(E1) state in low energy

$$\langle \text{g.s.} \left| rY^{(1)}(i,j) \right| \text{PDR}⟩$$

$$|\text{SR}⟩ = \frac{1}{N} rY^{(1)}|\text{g.s.}⟩$$

$$\langle \text{g.s.} \left| rY^{(1)}(i,j) \right| \text{SR}⟩$$

Sum rule state (GDR)
$rY^{(1)}$ matrix element for proton

$$B(E1) = \left(e_{tz} \sum_{i,j} \langle \text{g.s.} \| rY^{(1)}(i, j, tz) \| 1^- \rangle \right)^2$$

PDR state

| PDR \rangle ... large B(E1) state in low energy

$$\langle \text{g.s.} \| rY^{(1)}(i, j) \| \text{PDR} \rangle$$

- 50Ca
- 52Ca
- 54Ca
- 56Ca
- 58Ca
- 60Ca

Sum rule state (GDR)

| SR $\rangle = \frac{1}{N} rY^{(1)} | \text{g.s.} \rangle$

$$\langle \text{g.s.} \| rY^{(1)}(i, j) \| \text{SR} \rangle$$

- 50Ca
- 52Ca
- 54Ca
- 56Ca
- 58Ca
- 60Ca

Graphs

- **PDR state**
 - $|0d_{5/2} \rightarrow 0f_{7/2}\rangle$
 - $|0d_{3/2} \rightarrow 0f_{5/2}\rangle$
 - $|1s_{1/2} \rightarrow 1p_{3/2}\rangle$

- **Sum rule state (GDR)**
 - $|0d_{5/2} \rightarrow 0f_{7/2}\rangle$
 - $|0d_{3/2} \rightarrow 0f_{5/2}\rangle$
 - $|1s_{1/2} \rightarrow 1p_{3/2}\rangle$
Beyond $3\hbar\omega$ truncation and toward heavier region by Monte Carlo shell model (MCSM)
Very brief outline of MCSM

- Efficient description of nuclear many-body states based on the basic picture of nuclear structure
 = intrinsic state + rotation + superposition

\[
|\Psi^{IM\pi}(N_b)\rangle = \sum_{d=1}^{N_b} f^{(d)} \sum_{K=-I}^{I} g^{(d)}_K \hat{P}_{\pi} \hat{P}_{MK} |\varphi(D^{(d)})\rangle
\]

MCSM basis dimension \(\approx 100 \)

Wave function = \(f^{(1)} + f^{(2)} + f^{(3)} + \ldots \)

\(D^{(d)} \) : determined stochastically and variationally
Nℏω configuration with N>3?

B(E1) sum rule

by Monte Carlo shell model

- ^{48}Ca B(E1) sum rule ($e^2\text{fm}^2$)
 - $1\hbar\omega$ \ldots 16.5
 - $(1+3)\hbar\omega$ \ldots 13.6
 - MCSM 50dim \ldots 10.1

- ^{51}V B(E1) sum rule
 - $1\hbar\omega$ \ldots 18.1
 - $(1+3)\hbar\omega$ \ldots NA
 - MCSM 50dim \ldots 12.4

Many-body correlations suppress B(E1) rule
Monte Carlo shell model for E1 spectrum

Photo-absorption cross section of ^{48}Ca

$1\hbar\omega$: up to $1\hbar\omega$ excitation in sd-pf-sdg shell

4.1×10^6 M-scheme dim.

at PC

$(1+3)\hbar\omega$: up to $3\hbar\omega$ excitation in sd-pf-sdg shell

1.2×10^{10} M-scheme dim.

at supercomputer

$79\text{Se} (1+3)\hbar\omega$: 1.2×10^{14} dim.

far beyond the current capability of Lanczos method

Monte Carlo shell model for E1 spectrum
Concept to describe \(E1 \) spectrum with MCSM

\[
E1 = \sqrt{\frac{3}{4\pi}} \sum_{i=1}^{A} e_{i} \vec{r}_{i}
\]

\(e_i = N / A \) (proton),

\(-Z / A \) (neutron)

We introduce an exponential of one-body operator.

\[
\exp(i\varepsilon \cdot E1) \equiv \exp(i\varepsilon \cdot \sum_{i=1}^{A} e_{i}(x_{i} + y_{i} + z_{i}))
\]

We consider the following type of states:

\[
\left| \phi_{i}^{E1} \right> = \exp(i\varepsilon \cdot E1)\left| \phi_{i}^{g.s.} \right>
\]

Although this was a good idea, it is still too naïve to use this kind of states as the basis vectors for \(E1 \) spectrum.
Decomposition of $\exp(i\varepsilon \cdot E1)$ operator

The $E1$ operator is decomposed so as to treat transitions between different sets of orbits separately:

$\exp(i\varepsilon \cdot E1(0f_{7/2} \rightarrow 0g_{9/2}))$, $\exp(i\varepsilon \cdot E1(0g_{9/2} \rightarrow 0h_{11/2}))$, ...

Strength distribution is too concentrated.

Peaks corresponding to different orbital combinations appear.

Ref. T. Otsuka, T. Togashi, N. Shimizu et al.
E1 excitation spectrum can be calculated by MCSM

Ground state:

\[
|\Psi\rangle = \sum_{k=1}^{N_{\text{MCSM}}} f_k P^{J,\pi} \varphi_k
\]

Basis vector of the ground state (Slater determinant)

Basis vectors for E1 spectrum \((a,b,c,d, \ldots : \text{orbits})\)

\[
\exp(i\varepsilon \cdot E1(a \rightarrow b))|\varphi_k\rangle, \exp(i\varepsilon \cdot E1(c \rightarrow d))|\varphi_k\rangle, \ldots (k = 1,2,\ldots)
\]

Additional bases for fine tuning:

variation for energy average by the conjugate gradient

\[
|\varphi_k (E1(a \rightarrow b))^\text{Var}\rangle, |\varphi_k (E1(c \rightarrow d))^\text{Var}\rangle, \ldots
\]

Diagonalization with these basis vectors after projection to 1-

Excitation spectrum up to certain fine structure

E1 spectrum with \(~3000\) levels connected somehow to the g.s. (confirmed by E1 sum rule)
Overview of description of $E1$ spectrum with MCSM

Step 1. The ground state is solved by MCSM.

$$|\Psi(\text{g.s.})\rangle = \sum_i f_i |\varphi_i^{\text{g.s.}}\rangle$$

Step 2. Basis vectors for $E1$ spectrum are generated by acting

$$\exp(i\epsilon \cdot E1(a \rightarrow b)), \exp(i\epsilon \cdot E1(c \rightarrow d)), \ldots$$
on basis vectors of the ground state.

Step 3. More basis vectors are generated by the variation for the basis
vectors of step 2. Diagonalize H by all basis vectors.

$$\exp(i\epsilon \cdot E1(a \rightarrow b))|\varphi_i^{\text{g.s.}}\rangle, \exp(i\epsilon \cdot E1(c \rightarrow d))|\varphi_i^{\text{g.s.}}\rangle, \ldots$$

Step 4. Low-energy $E1$ excited states are solved independently
by “normal” MCSM and are added to the spectrum.

Photo absorption cross section is calculated

$$\sigma(E) [\text{fm}^2] = \frac{16\pi^3}{9} \frac{e^2}{\hbar c} \sum_{J_n^f} \frac{1}{\pi} \frac{\gamma}{(E - Ex(J_n^f))^2 + \gamma^2} \cdot Ex(J_n^f) \cdot B(E1; J^i \rightarrow J_n^f).$$

Excitation energy of n-th $E1$ excited state

Lorentzian width: $\gamma = \Gamma/2$ (adjusted parameter)
Concept of MCSM strength function

with keeping Slater-det. form

\[|\Phi_{g.s.}\rangle = \sum_i f_i P^{J\pi} |\varphi_i\rangle \]

\[|\varphi_{0,k}\rangle \]
\[|\varphi_{0,k}^{\text{Var}}\rangle \]
\[|\varphi_{0,k}^{\text{VarVar}}\rangle \]
\[|\varphi_{0,l}\rangle \]
\[|\varphi_{0,l}^{\text{Var}}\rangle \]
\[|\varphi_{0,l}^{\text{VarVar}}\rangle \]

Var: variation by 2-step conjugate gradient

\[|\varphi_{1,k}\rangle = e^{i\varepsilon O_k} |\varphi_1\rangle \]

\[O_k = E1(a \rightarrow b) \]
Concept of Lanczos strength function method

"Sum rule" state

\[|\varphi_0\rangle = O(E1) |0^+_1\rangle \]

\[|\varphi_1\rangle = H|\varphi_0\rangle \]

\[|\varphi_2\rangle = H|\varphi_1\rangle \]

\[\vdots \]

\[|\varphi_n\rangle \]

\[|\varphi_k\rangle : \text{basis vectors} \]

huge in \(M \)-scheme

\[10^{10} \text{ dim.} \Rightarrow 80\text{GB} \]

\[1 \leq k \leq n, \ n \sim 300 \]
E1 excitation described by Monte Carlo shell model

Benchmark test

Lanczos calc. (exact)

M-scheme dimension 3,844,499

Monte Carlo shell model (MCSM)

600 MCSM basis vectors

\[|\Psi\rangle = \sum_{k=1}^{N_{MCSM}} f_k P^J \pi |\varphi_k\rangle \]

\[|\varphi_k\rangle = \prod_{\alpha=1}^{N} \left(\sum_{i=1}^{N_{sp}} c_i \ D_{i\alpha}^{(k)} \right) |\rangle \]

\(^{18}\text{O} \) with p-sd shell psdwb int.
Photoabsorption cross section of 88Sr, 90Sr

- Model space:
 pf - sdg - pfh($0h_{11/2}$, $1f_{7/2}$, $2p_{3/2}$) shell
 (3 major shell)

- Effective Hamiltonian: V_{MU} (+ M3Y LS)
 (central force scaled by 0.55)
 *Y. Utsuno et al., PRC86, 051301(R) (2012)

- The number of basis:
 1000 basis vectors are used to describe $E1$ spectrum.

M-scheme dimension of Hamiltonian matrix for 90Sr is 8.2×10^{14} with truncation of 3hw excitation.

Cross section (mb)

Photoabsorption cross section σ_{abs} of 88Sr ($Z=38$, $N=50$), 90Sr ($Z=38$, $N=52$)

<table>
<thead>
<tr>
<th>Cross section (mb)</th>
<th>Lorentzian width Γ_{LLFP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>88Sr (stable nucleus)</td>
<td>$\sigma_{abs} = \sigma(\gamma, \gamma')$</td>
</tr>
<tr>
<td>88Sr(γ,n) EXP data</td>
<td>B(E1) sum: 24.97</td>
</tr>
<tr>
<td></td>
<td>Sum rule : 26.94</td>
</tr>
</tbody>
</table>

| 90Sr (Long-lived fission product (LLFP)) | B(E1) sum: 25.14 |
| | Sum rule : 28.47 |

http://cdfe.sinp.msu.ru/saladin/gdrmain.html
Results of Se (Z=34) isotopes

- Model space:
 \textit{sd - pf - sdx - 0h}_{11/2} \\
 (4 major shell)

- Effective Hamiltonian: *SDPF-MU (sd-pf) + V_{MU} (others) \\
 (central force scaled by 0.35)

*Y. Utsuno et.al., PRC86, 051301(R) (2012)

Photoabsorption cross section σ_{abs} of ^{76}Se (N=42), ^{78}Se (N=44), ^{79}Se (N=45)

Cross section (mb)

![Graphs showing photoabsorption cross section for ^{76}Se, ^{78}Se, and ^{79}Se]

Lorentzian width $\Gamma = 2.0\text{MeV}$

300 bases are used to describe $E1$ spectrum as preliminary calculation.
Summary

• Lanczos strength function in LSSM
 – E1 of Ca isotopes with LSSM
 • GDR \((1+3)\hbar\omega\) essential, higher \(\hbar\omega\) configuration
 • PDR \(1\hbar\omega\) enough
 • odd nuclei are feasible : Ca isotopes, \(^{51}\text{V}\)
 – PDR enhancement in \(^{52}\text{Ca}-^{60}\text{Ca}\)
 • PDR is on the tail of GDR
 • \(rY^{(1)}\) reduced matrix elements

• Monte Carlo shell model for strength function
 – construct \(J^\pi\)-projected subspace spanned by \(E1\)-excited Slater determinants
 – feasibility tested, odd nuclei are feasible
 – undergoing application to systematic studies and LLFP nuclides