Experimental results on the Pygmy Dipole Resonance using the NRF method

Deniz Savran

GSI Helmholtzzentrum für Schwerionenforschung GmbH
ExtreMe Matter Institute EMMI

COMEX 5
- 2015 -
E1 strength in (spherical) atomic nuclei

- Giant Dipole Resonance (GDR)
- Pygmy Dipole Resonance (PDR)

D. S., T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70 (2013) 210
Setting constrains on iso-vector properties of the equation of state by investigating the E1 response of atomic nuclei.
Pygmy Dipole Resonance – Some open questions

- General phenomenon (minimum number of nucleons)?
- Substructures within the E1 strength distribution (transition densities)?
- Correlation of PDR to basic properties of nuclei?
- Connection of E1/PDR to symmetry energy of EOS?

>> use of different (complementary) experimental methods

D. S., T. Aumann, and A. Zilges, Prog. Part. Nucl. Phys. 70 (2013) 210
Experimental methods

Real photon induced reactions
- Nuclear Resonance Fluorescence (NRF)
- Photodissociation

Coulomb excitation
- Inelastic proton scattering
- Reaction in inverse kinematics

Hadron scattering (direct reaction)
- \((\alpha,\alpha'\gamma)\)
- \((^{17}\text{O},^{17}\text{O}\gamma)\)

Nuclear (compound/transfer) reactions
- \((p,p'\gamma)\)
- \((d,p\gamma)\)
- \((^{4}\text{He},^{3}\text{He})\) …
Experiments with real photons

- High selectivity to dipole excitations
- Well-known excitation mechanism

Photon scattering (γ,γ') Photodissociation ($\gamma,n), (\gamma,p), \ldots$
Photon scattering ...

... using Bremsstrahlung

- Investigation of large energy region
- Excellent energy resolution: State-to-state analysis, investigation of fine structure

e.g. Darmstadt High Intensity Photon Setup (DHIPS):
K. Sonnabend et al., Nucl. Instr. and Meth. A640 (2011) 6
Photon scattering ...

... using Laser Compton Backscattering

- Determination of parities

E.g. High Intensity γ-ray Source (HIγS):

Systematic investigations
NRF state-to-state analysis

- Investigation of fine structure and fragmentation
- Introduces sensitivity limit
 >> incomplete total strength

Analysis of continuum in NRF experiments with bremsstrahlung
(R. Schwengner et al.)

>> total strength, but no longer model independent

(simulation of background and cascades using the statistical model)
“Missing” strength in NRF?

- What is the reason for the large discrepancy between \((p,p')\) and \((\gamma,\gamma')\) (especially for \(E < 6\) MeV)?

- Is \(^{120}\)Sn an exception or do we encounter the same problem for other nuclei?
Contribution: “unresolved” strength

- Excitation into narrow energy region
- Intensity at beam energy exclusively from decays to the ground state
Contribution: “unresolved” strength
Contribution: “unresolved” strength

E_{γ} [MeV]

γ counts / 3 keV

E_{γ} [MeV]

Counts / 10 keV

Energy (MeV)

σ [mb]

- elastic, peaks only
- elastic, full spec
- elastic, DR corrected
Contribution: Inelastic decay channels

- Investigation of inelastic decay contributions

see: A.P. Tonchev et al., PRL 104 (2010) 072501
Results for ^{130}Te

![Graph showing results for ^{130}Te](image)
Results for 140Ce

B. Löher et al., to be published
Remaining issues

elastic channel

Background contributions from non-resonant scattering?

Small, since most of the elastic strength concentrated in peaks

inelastic channel

Decays bypassing the first excited states?

Only about 10-20% of inelastic part according to statistical model
Decay properties

- Different decay channels sensitive to different aspects of the wave function (coupling to low-energy phonons)
- Directly connected to photon strength functions (used in the statistical model)

Experimentally challenging
γ-γ spectroscopy at HIγS

New γ^3 setup at HIγS

Provides sufficient efficiency to perform $\gamma-\gamma$ coincidence experiments using the mono-energetic intense photon beam at HIγS

B. Löher et al., NIM A 723 (2013) 136
First results for 140Ce

- Investigation of coupling to first excited states
- Good description within the QPM
- Direct access to E1 strength function

E_x [MeV]

0 7.5 8.0 8.5

B. Löher et al., NIM A 723 (2013) 136
B. Löher, PhD Thesis, to be published
Conclusions

- NRF as model independent method to investigate E1 strength in atomic nuclei

- Using monochromatic photon beams yields:
 - Inelastic contribution
 - Unresolved contributions

- Results for 140Ce and 130Te:
 - About 40%-50% of the total strength within isolated (resolved) states decaying to the ground state

- Direct determination of branching ratios using $\gamma-\gamma$ coincidence within NRF (more by J. Isaak)
Collaboration

J. Isaak, B. Löher, J. Silva
GSI, EMMI

V. Derya, J. Endres, and A. Zilges
University of Cologne

T. Aumann, N. Pietralla, V.Yu. Ponomarev, C. Romig,
H. Scheit
Technical University Darmstadt

M.N. Harakeh, and H.J. Wörtche
University of Groningen

J. Glorius, and K. Sonnabend
Goethe-University Frankfurt

W. Tornow, and H. Weller
TUNL, Duke University

supported by the Helmholtz Association (HA216/EMMI) and by the DFG (SFB 634 and No. ZI 510/4-1).
Conclusions

- NRF as model independent method to investigate E1 strength in atomic nuclei
- Using monochromatic photon beams yields:
 - Inelastic contribution
 - Unresolved contributions
- Results for ^{140}Ce and ^{130}Te:
 - About 40%-50% of the total strength within isolated (resolved) states decaying to the ground state
- Direct determination of branching ratios using $\gamma-\gamma$ coincidence within NRF (more by J. Isaak)