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ACTAR TPC: an active target 
and time projection chamber 

for nuclear physics
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Past: structure of nuclei close to stability in direct kinematics, use of magnetic spectrograph

 Good resolution (few keV)

 High beam intensity

 Stuck with stable isotopes from which a target can be made

J.E. Spencer and H.A. Enge, NIM 49, 181 (1967)

Nuclear structure through transfer reactions
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Nuclear structure through transfer reactions

Now: structure of exotic nuclei in inverse kinematics

 Study of nuclei with short half-life

 Low beam intensity

 Resolution strongly depends on target thickness

J.S. Thomas et al., PRC 71, 012302 (2005)

Detector(s) Detector(s)

100 keV 
FWHM

80 μg/cm2

300 keV 
FWHM

430 μg/cm2

28Si

29Si

pCD2

Need thick targets and excellent resolution

82Ge

83Ge

p

J.C.Lighthall et al., NIM A 622 97 (2010)
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Nuclear structure through transfer reactions

Now: ACTIVE TARGETS

 Study of nuclei with short half-life, produced with small intensity

 Use of thick target without loss of resolution

 Detection of very low energy recoils

Active target: (Gaseous) detector in which the atoms of the gas are used as a target
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When should active targets be used?

 Reactions with very negative Q-value in inverse kinematics

 recoil stops inside the target

68Ni(,’) @ 50A MeV → GMR

               Q  ≈ -15 MeV

M. Vandebrouck, PhD thesis, Université Paris-Sud XI (2013)

8He(19F, 20Ne) 7H @ 15A MeV

               Q  ≈ -13 MeV
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When should active targets be used?

 Reactions with very negative Q-value in inverse kinematics

 recoil stops inside the target

 Study of excitation functions

 thick target, need to differentiate the reaction channels

T. Roger, PhD thesis, Université de Caen (2009)
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When should active targets be used?

 Reactions with very negative Q-value in inverse kinematics

 recoil stops inside the target

 Study of excitation functions

 thick target, need to differentiate the reaction channels

 Reactions with very low intensity beams

 thick target, possibly no 12C contamination

Example: 132Sn(d,p) reaction

 For the same energy loss in the target, about 3x more deutons in D2 gas than in solid CD2  target

 Vertexing: possibility to increase the target thickness without loss of resolution

 Overall gain of D2 gaseous target: factor up to 100!

ACTARsim report: http://pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc/actarsim-2013-report/view
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1st active target in France: MAYA

Cathode recorded pattern
 2 dimensions

(32x32 pads)

Wire recorded time
3rd dimension

(32 wires)

MAYA: A two dimensional charge   –   one dimensional time 
projection chamber

C.E. Demonchy et al., NIM A 583, 341 (2007)
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MAYA: Achievements

 1st observation of Giant Resonances in radioactive nuclei: 56Ni & 68Ni

C.Monrozeau et al. Phys. Rev. Lett. 100, 042501 (2008)
M. Vandebrouck et al. Phys. Rev. Lett. 113, 032504 (2014)
M. Vandebrouck et al. Phys. Rev. C 92, 024316(2015)
S. Bagchi et al. Submitted to Phys. Lett. B (2015)

 Observation of the “most exotic” nucleus 7H

 M.Caamano et al. Phys. Rev. Lett. 99, 062502 (2007)

 1st study of the 11Li 2-neutron halo via a transfer reaction

 I.Tanihata et al. Phys. Rev. Lett. 100, 192502 (2008) 

T. Roger et al. Phys. Rev. C  79, 031603 (2009)
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MAYA: Limitations

 3rd dimension from wires

 Mostly stuck to binary reactions

 Gassiplex electronics

 Poor detection dynamics (~20)

 Huge dead-time (>2 ms for 2000 pads)

 5 mm side pads (8 mm pitch)

 Hard to reconstruct trajectories if range < few cm.

beam
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Active Targets improvements

 Improved detection dynamics

 Use GET electronics: theoretical dynamical range of ~1000 + digitized electronics

 Possibility of pads polarization: reduces locally the amplification

E.C. Pollaco et al., Physics Procedia 37, 1799 (2012)
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Active Targets improvements

 Improved detection dynamics

 Use GET electronics: theoretical dynamical range of ~1000 + digitized electronics

 Possibility of pads polarization: reduces locally the amplification

 Use a semi-transparent mask to reduce the number of primary electrons

J. Pancin et al., JINST 7, P01006 (2012)
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Active Targets improvements

 Improved detection dynamics

 Improved incoming beam intensity / heavy-Z beams

 Use a mask + field cage (Tactic-like)

 E653 experiment: Angular distribution of fission fragment in transfer-induced fission using MAYA

 Principle: use a 106 Hz 238U beam @ 6A MeV in isobutane

 Energy deposit ~ 1 PeV/s

 Primary ions electric field: ~ 80 V/cm compared to drift field ~ 15V/cm
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Active Targets improvements

 Improved detection dynamics

 Improved incoming beam intensity / heavy-Z beams

 Use a mask + field cage (Tactic-like)

C. Rodriguez-Tajes et al., NIM A 768, 179 (2014)
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Active Targets improvements

 Improved detection dynamics

 Improved incoming beam intensity / heavy-Z beams

 Use a mask + field cage (Tactic-like)

 Use L2 triggers & CPU farms to reduce the number of accepted triggers 
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Active Targets improvements: ACTAR TPC

 Improved detection dynamics

 Improved incoming beam intensity / heavy-Z beams

 Improved granularity: ACTAR TPC

 16384 pads, 2x2 mm²

 GET electronics: digitized signals on each pad

 Funded by ERC starting grant (G. Grinyer)

 About 8 millions voxels!  
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ACTAR TPC: Detector design

 Drift region:

 Demonstrator: 1 mm pitch single wire field cage

 Final chamber: double wire cage with pitch > 2mm

 Simulations ongoing

Simulations: S. Damoy (GANIL)



17/09/2015 T. Roger – COMEX 5 18

ACTAR TPC: Detector design

 Drift region:

 Demonstrator: 1 mm pitch single wire field cage

 Final chamber: double wire cage with pitch > 2mm

 Simulations ongoing

 Amplification region:

 Micromegas, 220 µm gap: OK for low pressure

 Fast timing, robust, cost effective

Y. Giomataris et al., NIM A 560, 405 (2006)
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ACTAR TPC: Detector design

 Drift region:

 Demonstrator: 1 mm pitch single wire field cage

 Final chamber: double wire cage with pitch > 2mm

 Simulations ongoing

 Amplification region:

 Micromegas, 220 µm gap: OK for low pressure

 Fast timing, robust, cost effective

 Segmented pad plane:

 Very high density: 2x2 mm² (= 25 channels/cm²)

 Total 16348 electronics channels, digitized (GET system)

 Auxiliary detectors:

 Telescopes for escaping particles (Si+Si or Si+CsI)

 LaBr3 or CeBr3 for  rays (SpecMAT ERC – R. Raabe)
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ACTAR TPC: Versatile design

 Design goal (1): Reconfigurable

 Auxiliary detectors for particles and/or  rays

 Configurable – Installation on any side

 Depends on the kinematics of the experiment

 Design goal (2): Versatility

 Perform reaction and decay experiments

 Two separate chambers will be designed

 Design goal (3): Portability

 Take advantage of unique beam production capabilities 
at each facility

 Design goal (4): Synergies with other projects

 SpecMAT ERC, PARIS and all potential users

 GANIL/LISE future plans
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ACTAR TPC: ERC planning

 ACTAR TPC ERC Project Planning

 Experiments at GANIL/G3 (2016/2017), GANIL/LISE (2017), HIE-ISOLDE (2018)

 Demonstrator experiments at IPNO (July 2015)
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ACTAR TPC: Demonstrator

 2048-channel pad plane
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ACTAR TPC: Demonstrator

 2048-channel pad plane

 Used at IPNO in July 2015 (BACCHUS beam line)
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ACTAR TPC: Demonstrator

 Two experiments performed at IPNO: -clustering in light nuclei

 12C(,’) inelastic scattering

 6Li(,) resonant scattering
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ACTAR TPC: Demonstrator

 Two experiments performed at IPNO: -clustering in light nuclei

Beam
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ACTAR TPC: Future possible campaigns at LISE

 Document on the exploitation of LISE in the horizon of 5 years currently written

 Working groups constituted: shell evolution, collective modes, nuclear astrophysics… 

 Presentation at the next GANIL SAC in October

 Preliminary conclusions of the “collective modes” working group:

 Possibility to combine ACTAR TPC and “classic” solid target + Château de Cristal setup

 Study (,’) or (p,p’) and (*,) at the same time!

 All collaborators are welcome!
Contact: O. Sorlin, J. Gibelin, M. Vandebrouck
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MAYA / ACTAR TPC collaboration
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ACTAR TPC: Efficiency comparison with MAYA

68Ni(,') tracking efficiency comparison between MAYA & ACTAR TPC (Courtesy M. Vandebrouck)

PRELI
M

IN
ARYE* = 20 MeV



17/09/2015 T. Roger – COMEX 5 29

ACTAR TPC: A possible gain calibration method

If the micromesh gap is not homogenous:
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ACTAR TPC: A possible gain calibration method

Step 1: inject a pulser on the mesh : get the gap

→ Q
pad

  = CxV
pulser

 = (
0 
x S

pad
 / gap) x V

Step 2: calculate a correction depending on the gas

→ Garfield simulations

Step 3: verify the correction (using cosmic rays)
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