

ACTAR TPC: an active target and time projection chamber for nuclear physics

Past: structure of nuclei close to stability in direct kinematics, use of magnetic spectrograph

- Good resolution (few keV)
- □ High beam intensity
- □ Stuck with stable isotopes from which a target can be made

J.E. Spencer and H.A. Enge, NIM 49, 181 (1967)

Now: structure of exotic nuclei in inverse kinematics

- □ Study of nuclei with short half-life
- □ Low beam intensity
- □ Resolution strongly depends on target thickness

Now: ACTIVE TARGETS

- □ Study of nuclei with short half-life, produced with small intensity
- □ Use of thick target without loss of resolution
- Detection of very low energy recoils

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

□ Reactions with very negative Q-value in inverse kinematics

 \rightarrow recoil stops inside the target

M. Vandebrouck, PhD thesis, Université Paris-Sud XI (2013)

□ Reactions with very negative Q-value in inverse kinematics

- \rightarrow recoil stops inside the target
- □ Study of excitation functions
 - \rightarrow thick target, need to differentiate the reaction channels

T. Roger, PhD thesis, Université de Caen (2009)

- □ Reactions with very negative Q-value in inverse kinematics
 - ightarrow recoil stops inside the target
- □ Study of excitation functions
 - \rightarrow thick target, need to differentiate the reaction channels
- □ Reactions with very low intensity beams
 - \rightarrow thick target, possibly no ¹²C contamination

Example: ¹³²Sn(d,p) reaction

- \rightarrow For the same energy loss in the target, about 3x more deutons in D₂ gas than in solid CD₂ target
- \rightarrow Vertexing: possibility to increase the target thickness without loss of resolution
 - → Overall gain of D_2 gaseous target: factor up to 100!

ACTARsim report: http://pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc/actarsim-2013-report/view

MAYA: A two dimensional charge – one dimensional time projection chamber

C.E. Demonchy et al., NIM A 583, 341 (2007)

□ 1st observation of Giant Resonances in radioactive nuclei: ⁵⁶Ni & ⁶⁸Ni

C.Monrozeau et al. Phys. Rev. Lett. **100**, 042501 (2008) M. Vandebrouck et al. Phys. Rev. Lett. **113**, 032504 (2014) M. Vandebrouck et al. Phys. Rev. C **92**, 024316(2015) S. Bagchi et al. Submitted to Phys. Lett. B (2015)

Observation of the "most exotic" nucleus ⁷H *M.Caamano et al. Phys. Rev. Lett.* **99**, 062502 (2007) ²⁰ ¹⁰ ¹⁵ ¹⁰ ¹⁰ ¹⁰ ¹⁵

 1st study of the ¹¹Li 2-neutron halo via a transfer reaction *I.Tanihata et al. Phys. Rev. Lett.* **100**, 192502 (2008)
T. Roger et al. Phys. Rev. C **79**, 031603 (2009)

Differential cross section [mb/sr]

- □ 3rd dimension from wires
 - \rightarrow Mostly stuck to binary reactions

Gassiplex electronics

- \rightarrow Poor detection dynamics (~20)
- \rightarrow Huge dead-time (>2 ms for 2000 pads)

□ 5 mm side pads (8 mm pitch)

 \rightarrow Hard to reconstruct trajectories if range < few cm.

□ Improved detection dynamics

- \rightarrow Use GET electronics: theoretical dynamical range of ~1000 + digitized electronics
- \rightarrow Possibility of pads polarization: reduces locally the amplification

E.C. Pollaco et al., Physics Procedia 37, 1799 (2012)

□ Improved detection dynamics

- → Use GET electronics: theoretical dynamical range of ~1000 + digitized electronics
- \rightarrow Possibility of pads polarization: reduces locally the amplification
- \rightarrow Use a semi-transparent mask to reduce the number of primary electrons

J. Pancin et al., JINST 7, P01006 (2012)

- □ Improved detection dynamics
- □ Improved incoming beam intensity / heavy-Z beams
 - \rightarrow Use a mask + field cage (Tactic-like)
- → E653 experiment: Angular distribution of fission fragment in transfer-induced fission using MAYA
- → Principle: use a 10⁶ Hz ²³⁸U beam @ 6A MeV in isobutane
 - → Energy deposit ~ 1 PeV/s
 - \rightarrow Primary ions electric field: ~ 80 V/cm compared to drift field ~ 15V/cm

- □ Improved detection dynamics
- Improved incoming beam intensity / heavy-Z beams
 - \rightarrow Use a mask + field cage (Tactic-like)
 - \rightarrow Use L2 triggers & CPU farms to reduce the number of accepted triggers

- □ Improved detection dynamics
- Improved incoming beam intensity / heavy-Z beams
- □ Improved granularity: ACTAR TPC
 - \rightarrow 16384 pads, 2x2 mm²
 - \rightarrow GET electronics: digitized signals on each pad
 - \rightarrow Funded by ERC starting grant (G. Grinyer)

European Research Council

Established by the European Commission

➔ About 8 millions voxels!

Drift region:

- \rightarrow Demonstrator: 1 mm pitch single wire field cage
- \rightarrow Final chamber: double wire cage with pitch > 2mm
- \rightarrow Simulations ongoing

17/09/2015

Drift region:

- \rightarrow Demonstrator: 1 mm pitch single wire field cage
- \rightarrow Final chamber: double wire cage with pitch > 2mm
- \rightarrow Simulations ongoing

□ Amplification region:

- \rightarrow Micromegas, 220 µm gap: OK for low pressure
- \rightarrow Fast timing, robust, cost effective

2 mm

80 µm

Y. Giomataris et al., NIM A 560, 405 (2006)

Drift region:

- \rightarrow Demonstrator: 1 mm pitch single wire field cage
- \rightarrow Final chamber: double wire cage with pitch > 2mm
- \rightarrow Simulations ongoing

□ Amplification region:

- \rightarrow Micromegas, 220 µm gap: OK for low pressure
- \rightarrow Fast timing, robust, cost effective

□ Segmented pad plane:

- \rightarrow Very high density: 2x2 mm² (= 25 channels/cm²)
- \rightarrow Total 16348 electronics channels, digitized (GET system)

□ Auxiliary detectors:

- \rightarrow Telescopes for escaping particles (Si+Si or Si+CsI)
- → LaBr₃ or CeBr₃ for γ rays (SpecMAT ERC R. Raabe)

- Design goal (1): Reconfigurable
 - \rightarrow Auxiliary detectors for particles and/or γ rays
 - \rightarrow Configurable Installation on any side
 - \rightarrow Depends on the kinematics of the experiment
- Design goal (2): Versatility
 - \rightarrow Perform reaction and decay experiments
 - ightarrow Two separate chambers will be designed
- Design goal (3): Portability

 \rightarrow Take advantage of unique beam production capabilities at each facility

Design goal (4): Synergies with other projects

- \rightarrow SpecMAT ERC, PARIS and all potential users
- \rightarrow GANIL/LISE future plans

□ ACTAR TPC ERC Project Planning

- → Experiments at GANIL/G3 (2016/2017), GANIL/LISE (2017), HIE-ISOLDE (2018)
- \rightarrow Demonstrator experiments at IPNO (July 2015)

□ 2048-channel pad plane

→ Used at IPNO in July 2015 (BACCHUS beam line)

Two experiments performed at IPNO: α -clustering in light nuclei

 \Box Two experiments performed at IPNO: α -clustering in light nuclei

300

(sample) Z (sample)

200

Document on the exploitation of LISE in the horizon of 5 years currently written

- \rightarrow Working groups constituted: shell evolution, collective modes, nuclear astrophysics...
- \rightarrow Presentation at the next GANIL SAC in October

□ Preliminary conclusions of the "collective modes" working group:

→ Possibility to combine ACTAR TPC and "classic" solid target + Château de Cristal setup

MAYA / ACTAR TPC collaboration

GANIL	<u>K.U. Leuven</u>	<u>IPNO</u>	CENBG	<u>USC</u>
M.Babo	F.Flavigny	V.Chambert	B.Blank	H.Alvarez
M.Blaizot	R.Orlandi	F.Dorangeville	J.Giovinazzo	J.Benlliure
P.Bourgault	R.Raabe	E.Khan	J.L.Pedroza	D.Cortina
S.Damoy	G.Randisi	A.Lermitage	J.Pibernat	M.Camaaño
G.Fremont	F.Renzi	A.Maroni		B.Fernández
J.Goupil	S.Sambi	G.Noel		
G.F.Grinyer		J.Peyre	<u>CEA/IRFU</u>	
G.Lebertre		J.Pouthas	F.Druillole*	
L.Legeard		P.Rosier	A.Gillibert	
C.Maugeais	GANIL	D.Suzuki	E.C.Pollacco	
J.Pancin	K.Turzo	T.Zerguerras	P.Sizun	
D.Perez-Loureiro	* M.Vandebrouck	_		
C.Porte*	V.Vandevoorde			
B .Raine	G.Voltolini			
T.Roger	G.Wittwer			
F.Saillant				
C.Spitaels				
L.Suen*				
🕒 Students 👘 🔵 P	ostdocs [*] Alumn	i		

17/09/2015

⁶⁸Ni(α , α ') tracking efficiency comparison between MAYA & ACTAR TPC (**Courtesy M. Vandebrouck**)

If the micromesh gap is not homogenous:

Step 1: inject a pulser on the mesh : get the gap

Step 3: verify the correction (using cosmic rays)

