

Towards the first observation of isoscalar giant monopole resonances in unstable tin isotopes with CNS Active Target (CAT)

Shinsuke OTA

Supported by KAKENHI Grant Number 15H00834

Nucleon systems

1	Δ
proton neutron	atomi = prot
.fm	sever

1fm 1.4g/cm³ (Sun) atomic nuclei = protons + neutrons $\mathbf{\infty}$

neutron star ~ neutrons

several fm ~10¹⁴g/cm³

These many body systems are with different size with two components, which is governed by Equation of State of nuclear matter

Determination of EoS for symmetric and asymmetric matter

10km >10¹⁴g/cm³

Key words

- Isoscalar giant monopole resonance
 - cf. Keynote talks in this conferences and others
- Kτ (isospin dependence of incompressibility at saturation density of asymmetric matter)
 - can be directly extracted via experiments
 - experiment plan of 132Sn(d,d')
 - pilot experiment of 132Xe(d,d')
- CAT Active target system
 - Newly developed for high luminosity exp.
- High luminosity
 - (= <u>beam intensity</u> x target thickness)

Κτ

$$\begin{aligned} \mathcal{E}(\rho,\alpha) &= \mathcal{E}(\bar{x}_0,\alpha) + \frac{1}{2}[(1+3\bar{x}_0)^2 \mathcal{E}''(\bar{x}_0,\alpha)]\bar{x}^2 + \cdots \\ &\equiv \varepsilon_0(\alpha) + \frac{1}{2}K_0(\alpha)\bar{x}^2 + \cdots, \end{aligned}$$

$$\begin{aligned} \varepsilon_0(\alpha) &= \varepsilon_0 + \varepsilon_\tau \alpha^2 + \mathcal{O}(\alpha^4) = \varepsilon_0 + J\alpha^2 + \mathcal{O}(\alpha^4) \\ K_0(\alpha) &= K_0 - K_\tau \alpha^2 + \mathcal{O}(\alpha^4) \\ &= K_0 + \left(K_{\text{sym}} - 6L - \frac{Q_0}{K_0}L\right)\alpha^2 + \mathcal{O}(\alpha^4) \end{aligned}$$

$$K_A \sim K_{\text{vol}}(1 + cA^{-1/3}) + K_{\tau}[(N - Z)/A]^2 + K_{\text{Coul}}Z^2A^{-4/3},$$

Measurement of KA by changing asymmetry (N-Z)/A ~ isospin

Experimental Value of Kτ

 $K_A \sim K_{\text{vol}}(1 + cA^{-1/3}) + K_{\tau}[(N - Z)/A]^2 + K_{\text{Coul}}Z^2A^{-4/3},$

$K_{A} \sim K_{vol}(1 + cA^{-1/3}) + K_{\tau}[(N - Z)/A]^{2} + K_{Coul}Z^{2}A^{-4/3},$

not official

Sep. 14-18, 2015

$K_{A} \sim K_{vol}(1 + cA^{-1/3}) + K_{\tau}[(N - Z)/A]^{2} + K_{Coul}Z^{2}A^{-4/3},$

Ktau Project

PLAN: ISGMR IN 132SN VIA (D,D')

CNS Active Target (CAT)

RIBF113 experiment 132Sn(d,d') at RIBF (in near future)

luminosity = $10^5 \text{ cps x } 10^{20} \text{ cm}^{-2} \sim 0.01 \text{ mb}^{-1} \text{s}^{-1}$

Yield and Error Estimation

Expected strength distribution

 $\delta Ex = 1 \text{ MeV}$, $\delta \Theta_{CM} = 0.5 \text{ deg}$ Total cross section is calculated using OM. Only monopole / spherical Bessel

$$\Rightarrow dE_{GMR} \sim 0.17 \text{ MeV}$$

- \Rightarrow error of Kt can be reduced to 50 MeV from 70 MeV.
- \Rightarrow 0.5 MeV difference in E_{GMR} corresponds to 80 MeV difference in Kt

OPERATION WITH HIGH RATE BEAM AND 132XE(D,D')

Operation with high-intensity beams

w/ beam intensity of 10⁶ cps => O(1) mA at last THGEM.

large energy deposit by beam caused discharge of THGEM

because of too much gain for beam region
=> reduction of effective gain

Segmented THGEM provides better energy resolution than mesh grid along the beam path. => stable with up to the 500-kcps 100-MeV/u 132Xe beam

- **HIMAC** (22th 25th Jan, 2015)
 - 132Xe
 - 100MeV/u
 - 500 kcps
 - 10⁶ ppp with 2-sec extraction
 - 3 GEMs with 0.4atm deuterium

As a study of nuclear incompressibility in isobars and test for the high-intensity beam injection

Synchrotron at Chiba prefecture in Japan Mainly used for radiotherapy

- **HIMAC** (22th 25th Jan, 2015)
 - 132Xe
 - 100MeV/u
 - 500 kcps
 - 10⁶ ppp with 2-sec extraction
 - Huge number of delta rays

Hit pattern for one event

delta-ray energy distribution

$$\frac{d^2 N}{dT dx} = \frac{1}{2} K z^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{F(T)}{T^2} \qquad T_{\text{max}} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + 2\gamma m_e / M + (m_e / M)^2}$$

$$F(T) = (1 - \beta^2 T / T_{\text{max}})$$

Cut by pulse height (or charge)

Hit pattern for one event

Tracking and accumulate events

Summary and outlook

- CNS Active Target (CAT) is developed for the measurement of deuteron (or alpha) inelastic scattering.
 - Worked with the high intensity beams up to 500 kcps.
 - Achievable luminosity is 0.01 mb-1s-1
- Measurement of 132Xe(d,d') (and 14O) was performed at HIMAC.
 - Elastic peak is observed. The excitation energy resolution is 3.8 MeV FWHM (preliminary).
- ISGMR in 132Sn will be studied via (d,d') reaction using CAT in near future.
 - Systematic measurement of ISGMR can be performed at RIBF.
 - 132Sn, 106Sn, A=132 isobar etc.

Collaborators

- CAT development
 - S. Ota, H. Tokieda, C.S.
 Lee, Y.N. Watanabe, R.
 Kojima, Y. Aramaki, S.
 Michimasa, H. Matsubara,
 M. Dozono, M. Takaki,Y.
 Kiyokawa, (CNS) J.
 Zenihiro (RIKEN)
- with help by
 - H. Yamaguchi, K. Yako
 (CNS) H. Otsu, T. Uesaka
 (RIKEN)
 - E. Takada (NIRS)

- H307 (140)
 - CAT developper (left)
 - Y. Kubota, T. Nakao, T.
 Nichi, Y. Tanaka, K. Okochi,
 A. Obertelli, A. Corsi, C.
 Santamaria, J. Gibelin, Y.
 Matsuda, Y. Maeda
- H307 (132Xe)
 - CAT developperY. Maeda,
 S. Gotanda, xxx, U. Garg, Y.
 Guputa, T. Peach
- RIBF113 (132Sn) to be done
 - S. Ota, U. Garg et al.