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TABLE I. Model parameters used in the calculations. The parameter κ and the meson masses ms, mv , and mρ are all given in
MeV. The value of the nucleon mass is taken as M = 939 MeV.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ %v

FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.02376 0.06 0.03
NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.01591 0.00 0.00
Hybrid 508.194 782.501 763.000 106.2575 165.5848 79.6483 4.5472 −0.01952 0.00 0.00

this new (α ̸= 0) value of the saturation density:

E(ρ,α) = E(x̄0,α) + 1
2 (x − x̄0)2E ′′(x̄0,α) + · · · . (14)

Alternatively, by introducing the dimensionless parameter

x̄ ≡ (ρ − ρ̄0)
3ρ̄0

(15)

to characterize the deviations of the density from the new
saturation point, the expansion of E(ρ,α) given in Eq. (14)
may be cast in a form analogous to Eq. (4) for ESNM(ρ). That
is,

E(ρ,α) = E(x̄0,α) + 1
2 [(1 + 3x̄0)2E ′′(x̄0,α)]x̄2 + · · ·

≡ ε0(α) + 1
2K0(α)x̄2 + · · · , (16)

where the energy per particle and the incompressibility
coefficient at the new saturation density are given by

ε0(α) ≡ E(x̄0,α) = ε0 + Jα2 + O(α4), (17a)

K0(α) ≡ (1 + 3x̄0)2E ′′(x̄0,α)

= K0 +
(

Ksym − 6L − Q0

K0
L

)
α2 + O(α4). (17b)

The analytic results correct to second order in α are
summarized in the following set of equations, where
the quantities ρτ , ετ , and Kτ represent the deviations of
the saturation density, energy per particle, and incompressibil-
ity coefficient of infinite matter away from the symmetric N =
Z limit:

ρ0(α) = ρ0 + ρτα
2 + O(α4) = ρ0 − 3ρ0

L

K0
α2 + O(α4),

(18a)

ε0(α) = ε0 + ετα
2 + O(α4) = ε0 + Jα2 + O(α4), (18b)

K0(α) = K0 + Kτ α
2 + O(α4)

= K0 +
(

Ksym − 6L − Q0

K0
L

)
α2 + O(α4). (18c)

In view of the profuse choices of terminology existing in the
literature, our notation and conventions are discussed further
in the Appendix.

III. RESULTS

Having developed the necessary formalism in the preceding
sections, we devote this section to presenting the results of our
calculations. As we have done elsewhere [8], we generated our
results using two accurately calibrated models: NL3 [28,29]
and FSUGold [5]. In addition, we performed calculations with
a hybrid model to be introduced later. Effective meson masses
(i.e., interaction ranges) and coupling constants for the present
models are displayed in Table I as defined by the Lagrangian
density of Eq. (1).

With the above sets of parameters, one may compute
the nuclear-matter equation of state, namely, the energy
per particle as a function of density and neutron excess.
In particular, one can extract values for the various bulk
parameters defined in Eqs. (4) and (7) that characterize the
behavior of neutron-rich matter around saturation density;
these parameters are listed in Table II. Note that to make
contact with the parametrization given in Eq. (9), the value
of the exponent γ listed in Table II was extracted from
a fit to the symmetry energy in the low-density range of
ρ = (0.3 − 1.0)ρ0. The found results are in consonance with
the prediction γ = L/3J that follows from Eq. (9) (namely,
γ = 0.62 for FSUGold and γ = 1.06 in the case of NL3 and
the hybrid model). Whereas the FSUGold and NL3 models
agree on the energy and density at saturation—quantities that
are tightly constrained by existing ground-state observables—
significant discrepancies emerge in all remaining parameters.
The main difference between the two models may be succinctly
summarized by stating that whereas FSUGold predicts a soft
behavior for both symmetric nuclear matter (through K0) and
the symmetry energy (through L), NL3 predicts a stiff behavior
for both. Note that “stiff” and “soft” refer to whether the energy
increases rapidly or slowly, respectively, with density.

That symmetric nuclear matter and the symmetry energy
are either both soft (as in the FSUGold model) or both stiff
(as in the NL3 model) may lie at the core of the problem in
reproducing the experimentally measured GMR energies in the
Sn isotopes [6–8]. According to Eq. (18c), a large value of L (as
in NL3) generates a large softening of the incompressibility

TABLE II. Bulk parameters (as described in the text) characterizing the energy of symmetric nuclear
matter [Eq. (4)] and the symmetry energy [Eq. (7)] at saturation density. All quantities are in MeV, with the
exception of ρ0 given in fm−3 and the dimensionless parameter γ defined in Eq. (9).

Model ρ0 ε0 K0 Q0 J L Ksym γ

FSU 0.148 −16.30 230.0 −523.4 32.59 60.5 −51.3 0.64
NL3 0.148 −16.24 271.5 +204.2 37.29 118.2 +100.9 0.98
Hybrid 0.148 −16.24 230.0 −71.5 37.30 118.6 +110.9 0.98
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1.2 Methods

1.2.1 Overview of traditional method used in normal kinematics

Nuclear incompressibility KA and ISGMR energy EGMR are directly connected to each
other by an equation:

EGMR = h̄

√
KA

m < r2 >
, (4)

where m and < r2 > denotes the nucleon mass and mean square radius of matter[4]. The
ISGMR was identified in 1977[5, 6] and was the subject of a number of studies through
the 1980s[7, 8, 9]. Most of the earlier investigations of the isoscalar giant resonances used
inelastic α scattering at 100-200 MeV and the strength of a particular giant resonance
was assumed to be concentrated in a single peak with a Gaussian or Lorentzian shape.
More recently, there have been giant resonance measurements using inelastic scattering
of 386-MeV α particles at extremely small angles, including 0◦ at RCNP (for instance ref.
[10, 11]) as well as with 240-MeV α particles at Texas A&M [12]. In both cases, multipole
decomposition analysis was performed to great effect to extract the ISGMR strengths.

The EGMR is usually referred to as a moment ratio of the strength distribution. In
the measurement for the tin isotopes, alpha particles were used as a isoscalar probe to
excite the GMR and the missing mass spectroscopy was applied to deduce the excitation
energy and scattering angle[1, 2]. Since the GMR is located in the continuum region,
multipole- decomposition analysis is employed to deduce the monopole strength from the
excitation energy and scattering angle distribution of the reaction spectra. The multipole-
decomposition analysis is enabled by forward-angle scattering measurement (including
zero degrees), where the angular distribution of the monopole strength is distinctly dif-
ferent from that of other multipoles, and also the monopole strength is largest at 0◦.
Optical model parameters required for the coupled channel calculation of cross section
for the excitation of various multipole can be deduced by analyzing the elastic scattering
data.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ
2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deduced
KA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-
Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractive
possibility for measurement of giant resonances in nuclei away from the stability line is
inelastic scattering off a 2H target. In that measurement, the TPC MAYA was used as an
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which can give the incompressibility, KA of the nucleus
under investigation. Examples of such “background-free”’
spectra, as well as the details of the experimental tech-
niques and analysis procedures for these measurements
have been provided in several recent reports from the
RCNP work (see, for example, refs. [40,41,33]).

To go from KA to K∞, one builds a class of energy
functionals, E(ρ) (cf. eq. (1)), with different parameters
that allow calculations for nuclear matter and finite nu-
clei in the same theoretical framework. The parameter-
set for a given class of energy functionals is characterized
by a specific value of K∞. The ISGMR strength distri-
butions are obtained for different energy functionals in a
self-consistent RPA calculation. The K∞ associated with
the interaction that best reproduces the ISGMR centroid
energies is, then, considered the correct value [28].

Following this procedure, both relativistic and non-
relativistic calculations give K∞ = 240 ± 20MeV [42–
46]. These accurately calibrated relativistic and non-
relativistic models reproduce very well the ISGMR cen-
troid energies in the “standard” nuclei, 90Zr and 208Pb.
However, it has been established in recent measurements
on the Sn and Cd isotopes [41,33] that this value of K∞
significantly overestimates EISGMR for these “open shell”
nuclei. In other words, it would appear that the Sn and Cd
nuclei are “softer”, considering the EISGMR from just these
nuclei would yield an appreciably lower value for K∞.
Pairing correlations have been suggested as a reason for
this softening; yet, the results are not conclusive [47–49].

As noted in the previous section, KA may be parame-
terized as

KA ≈ Kvol(1 + cA−1/3) + Kτ

(
N − Z

A

)2

+ KCoul
Z2

A4/3
.

(30)

Here, c ≈ −1 as noted previously and discussed in de-
tail in ref. [50]; KCoul is essentially a model-independent
term (in the sense that the deviations from one theoretical
model to another are quite small) [31]; and Kτ is the asym-
metry term. Although closely related, the finite-nucleus
asymmetry term Kτ should not be confused with the cor-
responding term in infinite nuclear matter —a quantity
also denoted by Kτ at times, but which should actually
be written as K∞

τ (we have introduced this quantity in
eq. (18) above, and showed that it should not be confused
with Ksym either; in fact, the asymmetry coefficient of
the finite nucleus incompressibility does not take contri-
bution merely from the second derivative of the symme-
try energy). K∞

τ should never be regarded as the A→∞
limit of the finite-nucleus asymmetry Kτ . Yet the fact that
Kτ is both experimentally accessible and strongly corre-
lated with K∞

τ is vital in placing stringent constraints on
the density dependence of the symmetry energy. It is the
strong sensitivity of K∞

τ to the density dependence of the
symmetry energy that makes this investigation of criti-
cal importance in constraining the EOS of neutron-rich
matter.

This asymmetry term, Kτ , can be obtained by inves-
tigating the ISGMR over a series of isotopes for which
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Fig. 7. The difference KA − KCoulZ
2A−4/3 in the Sn and

Cd isotopes plotted as a function of the asymmetry param-
eter, (N − Z)/A. The data are from refs. [41,33]. The val-
ues of KA have been derived using the customary moment
ratio

p
m1/m−1 for the energy of ISGMR, and a value of

5.2 ± 0.7 MeV has been used for KCoul (see previous section).
The solid lines correspond to Kτ = −550 MeV.

the neutron-proton asymmetry, (N − Z)/A, changes by
an appreciable amount. Coming back to eq. (30), for
a series of isotopes, the difference KA − KCoulZ2A−4/3

may be approximated to have a quadratic relationship
with the asymmetry parameter ((N − Z)/A), of the type
y = A + Bx2, with Kτ being the coefficient, B, of the
quadratic term.

Such an investigation was carried out by Li et al. over
the even-A 112−124Sn isotopes [40,41] and by Patel et al.
over the even-A 106,110−116Cd isotopes [33]. The Sn iso-
topes yielded a value of Kτ = −550 ± 100MeV, the Cd
isotopes resulted in Kτ = −555 ± 75MeV. Not only are
the two values thus obtained in excellent agreement with
each other, but also are consistent with values indirectly
obtained from several other measurements: Kτ = −370±
120MeV obtained from the analysis of the isotopic trans-
port ratios in medium-energy heavy-ion reactions [32],
Kτ = −500+120

−100 MeV obtained from constraints placed
by neutron-skin data from anti-protonic atoms across the
mass table [51]; and, Kτ = −500± 50MeV obtained from
theoretical calculations using different Skyrme interac-
tions and relativistic mean-field (RMF) Lagrangians [31].
In fig. 7, we show the data for the Sn and Cd isotopes from
refs. [41,33] along with quadratic fits with a common value
of Kτ = −550MeV.

From the correlation plots in figs. 4 and 5, one may
extract the symmetry energy coefficients J and L from
the empirical value Kτ = −550MeV. We must take into
account the error on this latter quantity (±100MeV), as
well as the uncertainties on the linear fits. In this way, J
is found to lie in the range 27.7–35.6MeV. On the other
hand, the correlation between Kτ and L is weaker and we
cannot get a meaningful constraint on L.

The “experimental” values thus obtained from the IS-
GMR for K∞ and Kτ taken together can provide a means
of selecting the most appropriate of the interactions used
in EOS calculations. In fig. 8, we plot the K∞ and Kτ
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measurements with inelastic ! scattering [7,21,23,24], and
although resonance parameters for GMR in the Sn isotopes
close to the values reported here have been extracted in the
past using less accurate techniques [21], the potentially
large systematic errors in those values necessitated the
present measurements where such problems have been
eliminated. We find that the GMR energies in the Sn
isotopes are lower than the values predicted in recent
theoretical calculations even though the interactions used
in these calculations reproduce the GMR energies in the
‘‘standard’’ nuclei, 208Pb and 90Zr, very well. Also, we
obtain a value K" ! "550# 100 MeV from these data.

The experiment was performed at the ring cyclotron
facility of the Research Center for Nuclear Physics,
Osaka University, using inelastic scattering of 400-MeV
! particles over the angular range 0$ –8.5$. Details of the
experimental technique and the data analysis procedure
have been provided previously [5,6,8] and are only briefly
described here. Inelastically scattered ! particles were
momentum analyzed with the magnetic spectrometer
‘‘Grand Raiden’’ [25] and detected in the focal-plane
detector system composed of two multiwire drift chambers
and two scintillators, providing particle identification as
well as the trajectories of the scattered particles. The
vertical position spectrum obtained in the double-focused
mode of the spectrometer was exploited to eliminate all
instrumental background [5,6,8]. The background-free
‘‘0$’’ inelastic spectra for the Sn isotopes are presented
in Fig. 1. In all cases, the spectrum is dominated by the
GMR peak near Ex % 15 MeV.

In order to extract the GMR strengths, we have em-
ployed the now standard MDA procedure [26]. The

cross-section data were binned into 1-MeVenergy intervals
between 8.5 and 31.5 MeV and the experimental 17-point
angular distribution d#exp

d! &$cm; Ex' for each excitation-
energy bin was fitted by means of the least-squares method
with a linear combination of calculated distributions
d#cal

L
d! &$cm; Ex', so that

 

d#exp

d!
&$cm; Ex' !
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L!0

!L&Ex'
d#cal

L

d!
&$cm; Ex'; (2)

where d#cal
L

d! &$cm; Ex' is the calculated distorted-wave Born
approximation (DWBA) cross section corresponding to
100% energy-weighted sum-sure (EWSR) for the Lth
multipole. The DWBA calculations were performed fol-
lowing the method of Satchler and Khoa [27] using the
density-dependent single folding model, with a Gaussian
!-nucleon potential for the real part, and a Woods-Saxon
imaginary term. We have used the transition densities and
sum rules for various multipolarities as described in
Ref. [28]. The optical model parameters were obtained
from analysis of elastic scattering cross sections measured
in a companion experiment.

Although all strength distributions up to L ! 3 have
been reliably extracted from the multipole decomposition,
only the GMR strengths, the focus of this Letter, are shown
in Fig. 2. The solid lines in the figure represent Lorentzian
fits to the observed strength distributions. The choice of the
Lorentzian shape is arbitrary; the final results are not
affected in any significant way by using, for example, a
Gaussian shape instead. The finite strength at the higher

FIG. 1. Excitation-energy spectra for all even-A Sn isotopes,
obtained from inelastic ! scattering at $lab ! 0:69$.

FIG. 2. GMR strength distributions obtained for the Sn iso-
topes in the present experiment. Error bars represent the uncer-
tainty due to the fitting of the angular distributions in MDA. The
solid lines show Lorentzian fits to the data.
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1.2 Methods

1.2.1 Overview of traditional method used in normal kinematics

Nuclear incompressibility KA and ISGMR energy EGMR are directly connected to each
other by an equation:

EGMR = h̄

√
KA

m < r2 >
, (4)

where m and < r2 > denotes the nucleon mass and mean square radius of matter[4]. The
ISGMR was identified in 1977[5, 6] and was the subject of a number of studies through
the 1980s[7, 8, 9]. Most of the earlier investigations of the isoscalar giant resonances used
inelastic α scattering at 100-200 MeV and the strength of a particular giant resonance
was assumed to be concentrated in a single peak with a Gaussian or Lorentzian shape.
More recently, there have been giant resonance measurements using inelastic scattering
of 386-MeV α particles at extremely small angles, including 0◦ at RCNP (for instance ref.
[10, 11]) as well as with 240-MeV α particles at Texas A&M [12]. In both cases, multipole
decomposition analysis was performed to great effect to extract the ISGMR strengths.

The EGMR is usually referred to as a moment ratio of the strength distribution. In
the measurement for the tin isotopes, alpha particles were used as a isoscalar probe to
excite the GMR and the missing mass spectroscopy was applied to deduce the excitation
energy and scattering angle[1, 2]. Since the GMR is located in the continuum region,
multipole- decomposition analysis is employed to deduce the monopole strength from the
excitation energy and scattering angle distribution of the reaction spectra. The multipole-
decomposition analysis is enabled by forward-angle scattering measurement (including
zero degrees), where the angular distribution of the monopole strength is distinctly dif-
ferent from that of other multipoles, and also the monopole strength is largest at 0◦.
Optical model parameters required for the coupled channel calculation of cross section
for the excitation of various multipole can be deduced by analyzing the elastic scattering
data.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ
2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deduced
KA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-
Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractive
possibility for measurement of giant resonances in nuclei away from the stability line is
inelastic scattering off a 2H target. In that measurement, the TPC MAYA was used as an
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the measurement for the tin isotopes, alpha particles were used as a isoscalar probe to
excite the GMR and the missing mass spectroscopy was applied to deduce the excitation
energy and scattering angle[1, 2]. Since the GMR is located in the continuum region,
multipole- decomposition analysis is employed to deduce the monopole strength from the
excitation energy and scattering angle distribution of the reaction spectra. The multipole-
decomposition analysis is enabled by forward-angle scattering measurement (including
zero degrees), where the angular distribution of the monopole strength is distinctly dif-
ferent from that of other multipoles, and also the monopole strength is largest at 0◦.
Optical model parameters required for the coupled channel calculation of cross section
for the excitation of various multipole can be deduced by analyzing the elastic scattering
data.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ
2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deduced
KA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-
Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractive
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where m and < r2 > denotes the nucleon mass and mean square radius of matter[4]. The
ISGMR was identified in 1977[5, 6] and was the subject of a number of studies through
the 1980s[7, 8, 9]. Most of the earlier investigations of the isoscalar giant resonances used
inelastic α scattering at 100-200 MeV and the strength of a particular giant resonance
was assumed to be concentrated in a single peak with a Gaussian or Lorentzian shape.
More recently, there have been giant resonance measurements using inelastic scattering
of 386-MeV α particles at extremely small angles, including 0◦ at RCNP (for instance ref.
[10, 11]) as well as with 240-MeV α particles at Texas A&M [12]. In both cases, multipole
decomposition analysis was performed to great effect to extract the ISGMR strengths.

The EGMR is usually referred to as a moment ratio of the strength distribution. In
the measurement for the tin isotopes, alpha particles were used as a isoscalar probe to
excite the GMR and the missing mass spectroscopy was applied to deduce the excitation
energy and scattering angle[1, 2]. Since the GMR is located in the continuum region,
multipole- decomposition analysis is employed to deduce the monopole strength from the
excitation energy and scattering angle distribution of the reaction spectra. The multipole-
decomposition analysis is enabled by forward-angle scattering measurement (including
zero degrees), where the angular distribution of the monopole strength is distinctly dif-
ferent from that of other multipoles, and also the monopole strength is largest at 0◦.
Optical model parameters required for the coupled channel calculation of cross section
for the excitation of various multipole can be deduced by analyzing the elastic scattering
data.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ
2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deduced
KA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-
Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.
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the measurement for the tin isotopes, alpha particles were used as a isoscalar probe to
excite the GMR and the missing mass spectroscopy was applied to deduce the excitation
energy and scattering angle[1, 2]. Since the GMR is located in the continuum region,
multipole- decomposition analysis is employed to deduce the monopole strength from the
excitation energy and scattering angle distribution of the reaction spectra. The multipole-
decomposition analysis is enabled by forward-angle scattering measurement (including
zero degrees), where the angular distribution of the monopole strength is distinctly dif-
ferent from that of other multipoles, and also the monopole strength is largest at 0◦.
Optical model parameters required for the coupled channel calculation of cross section
for the excitation of various multipole can be deduced by analyzing the elastic scattering
data.

The incompressibility of a nucleus KA, may be expressed as:

KA ∼ Kvol(1 + cA−1/3) + Kτ [(N − Z)/A]2 + KCoulZ
2A−4/3, (5)

To extract the symmetric term Kτ of nuclear incompressibility in eq. (5), the deduced
KA’s for tin isotopes were fitted by the quadratic function of asymmetric parameter (N-
Z)/A assuming the KCoulis model independent and c ∼ 1 as shown in Fig. 1.

1.2.2 Reaction study on (d,d’)

It has been shown a few years ago, in a measurement at GANIL [14], that an attractive
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8 27. Passage of particles through matter

mixtures of interest are published in a variety of places, notably in Ref. 24. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [22],
and is summarized in Ref. 1.

The remaining relativistic rise comes from the β2γ2 growth of Tmax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 27.2.4 below). At extreme energies (e.g., > 332 GeV for muons in iron, and at
a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 27.6.

27.2.3. Energetic knock-on electrons (δ rays): The distribution of secondary
electrons with kinetic energies T ≫ I is given by [3]

d2N

dTdx
=

1
2

Kz2 Z

A

1
β2

F (T )
T 2 (27.5)

for I ≪ T ≤ Tmax, where Tmax is given by Eq. (27.2). Here β is the velocity of the
primary particle. The factor F is spin-dependent, but is about unity for T ≪ Tmax. For
spin-0 particles F (T ) = (1 − β2T/Tmax); forms for spins 1/2 and 1 are also given by
Rossi [3]. For incident electrons, the indistinguishability of projectile and target means
that the range of T extends only to half the kinetic energy of the incident particle.
Additional formulae are given in Ref. 25. Equation (27.5) is inaccurate for T close to
I: for 2I <∼ T <∼ 10I, the 1/T 2 dependence above becomes approximately T−η, with
3 <∼ η <∼ 5 [26].
δ rays of appreciable energy are rare. For example, for a 500 MeV pion incident on a

silicon detector with thickness x = 300 µm, one may integrate Eq. (27.5) from Tcut to
Tmax to find that x(dN/dx) = 1, or an average of one δ ray per particle crossing, for Tcut
equal to only 12 keV. For Tcut = 116 keV (the mean minimum energy loss in 300 µm of
silicon), x(dN/dx) = 0.0475—less than one particle in 20 produces a δ ray with kinetic
energy greater than Tcut.∗

A δ ray with kinetic energy Te and corresponding momentum pe is produced at an
angle θ given by

cos θ = (Te/pe)(pmax/Tmax) , (27.6)

where pmax is the momentum of an electron with the maximum possible energy transfer
Tmax.

∗ These calculations assume a spin-0 incident particle and the validity of the Rutherford
cross section used in Eq. (27.5).
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Figure 27.3: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.20.

which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 27.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe-Bloch equation, but not for radiative losses, relevant only for muons and pions.

For a particle with mass M and momentum Mβγc, Tmax is given by

Tmax =
2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (27.2)

In older references [3,7] the “low-energy” approximation
Tmax = 2mec2 β2γ2, valid for 2γme/M ≪ 1, is often implicit. For a pion in copper, the
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w/(tracking(using(charge(and(dris(/me(
taking(the(effect(of(diffusion(into(account(
w/o(correc/on(of(efficiency(
E(less(than(1/10(of(total(data(
E(need(to(check(the(uniformity(and(
stability(of(gain�

Tracking(and(accumulate(events�



Summary(and(outlook�
•  CNS(Ac/ve(Target((CAT)(is(developed(for(the(measurement(of(

deuteron((or(alpha)(inelas/c(sca\ering.(
–  Worked(with(the)high)intensity)beams)up)to)500)kcps.(
–  Achievable(luminosity(is(0.01(mbE1sE1(

•  Measurement(of(132Xe(d,d’)((and(14O)(was(performed(at(HIMAC.(
–  Elas/c(peak(is(observed.(The(excita/on(energy(resolu/on(is(3.8)MeV)

FWHM)(preliminary).(
•  ISGMR(in(132Sn(will(be(studied(via((d,d’)(reac/on(using(CAT(in(near(

future.(
–  Systema/c(measurement(of(ISGMR(can(be(performed(at(RIBF.(

•  132Sn,(106Sn,(A=132(isobar(etc.(
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Collaborators�
•  CAT(development(

–  S.)Ota,)H.)Tokieda,)C.S.)
Lee,)Y.N.)Watanabe,(R.(
Kojima,(Y.(Aramaki,(S.(
Michimasa,(H.(Matsubara,(
M.(Dozono,(M.(Takaki,Y.(
Kiyokawa,((CNS)((J.(
Zenihiro((RIKEN)((

•  with(help(by(
–  H.(Yamaguchi,(K.(Yako(
(CNS)((H.(Otsu,(T.(Uesaka(
(RIKEN)((

–  E.(Takada((NIRS)�

•  H307((140)(
–  CAT(developper((les)(
–  Y.(Kubota,(T.(Nakao,(T.(
Nichi,(Y.(Tanaka,(K.(Okochi,(
A.(Obertelli,(A.(Corsi,(C.(
Santamaria,(J.(Gibelin,(Y.(
Matsuda,(Y.(Maeda(

•  H307((132Xe)(
–  CAT(developperY.(Maeda,(
S.(Gotanda,(xxx,(U.(Garg,(Y.(
Guputa,(T.(Peach(

•  RIBF113((132Sn)(to(be(
done(
–  S.(Ota,(U.(Garg(et(al.(
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