Nature of Pygmy Dipole Resonance in ^{74}Ge

Dinesh Negi

iThemba LABS, Cape Town, South Africa
and
CEBS, Mumbai, India
The Pygmy Dipole Resonance

Oscillation of neutron skin against the core

PDR : Open questions

- How collective is it?
- How does PDR depend on N/Z?
- How PDR effects r-process nucleosynthesis?
- Is ‘isospin-splitting’ a general phenomenon?
The Pygmy Dipole Resonance

Oscillation of neutron skin against the core

Pygmy Dipole Resonance

Giant Dipole Resonance

- How collective it is?
- How does PDR depends on N/Z?
- How PDR effects r-process nucleosynthesis?
- Is ‘isospin-splitting’ a general phenomenon?

Use of complementary probes to reveal details of structure

- Photon scattering:
 - dominant isovector excitation (for E1)
 - interaction with whole nucleus (kR << 1)

- α scattering:
 - dominant isoscalar excitation
 - interaction dominant at the surface
Recent studies on
El Strength distribution using
\((\alpha, \alpha'\gamma)\) reaction
Recent studies on E1 Strength distribution using (H-Ion,H-Ion'γ) reaction

\[^{208}\text{Pb}(^{17}\text{O},^{17}\text{O}')^{208}\text{Pb} \]

F. Crespi et al., *PRC* 91, 024323 (2015)
F. Crespi et al., *PRL* 113, 012501 (2014)
Scenario so far regarding studies with heavy ion scattering reactions

- Studies are limited to 130 mass region (except few cases) are done on nuclei with relatively larger N/Z asymmetry.
- Isospin-splitting is found in most of nuclei.

- Need for investigation in other mass regions (also in nuclei with lower N/Z asymmetry)

- Experimental effort was made to study low lying dipole states in 74Ge at iThemba LABS.
 - N/Z = 1.32
 - Weakly deformed prolate in its ground state
Experiment in new region

Population of excited states via inelastic scattering of 74Ge using the following reaction 74Ge(4He, 4He$'$)74Ge @ 48 MeV

For the detection of γ-rays
HPGe detectors in Clover arrangement
Nine Clover detectors.
(AFRODITE Array at iThemba LABS)

For the detection of charged particles
Telescope counters
(Double sided) Silicon Strip Detectors
Two Counters
Thickness (ΔE) = 284 μm
Thickness (E) = 980 μm
At ± 45 degrees with respect to the beam axis
Experimental technique for the study of Pygmy dipole resonance

• Excitation energy of the system from the inelastically scattered alpha particles.
• Simultaneous detection of γ decaying to the ground state.

$E_\gamma \approx E_x$

$\alpha - \gamma$ coincidence matrix

Excellent selection of $J^\pi = 1^-$ states
(for $E_x > 5$ MeV in even-even nucleus)
RESULTS

Raw Particle Identification plot

\[\Delta E \]

\[E \]

\[^{3}\text{He} \]

\[^{4}\text{He} \]

\[p \]

\[d \]

\[t \]

\[\alpha \text{ particle spectrum} \]
(with \(\gamma \) in coincidence)

\[\text{Counts} \]

\[0 \]

\[500 \]

\[1000 \]

\[1500 \]

\[2000 \]

\[2500 \]

\[3000 \]

\[3500 \]

\[4000 \]

\[4500 \]

\[5000 \]

\[5500 \]

\[6000 \]

\[6500 \]

\[7000 \]

\[7500 \]

\[8000 \]

\[t_\alpha - t_\gamma_1 \ (\text{ns}) \]

\[t_\alpha - t_\gamma_2 \ (\text{ns}) \]

\[(\alpha - \gamma)_{\text{corr}} \]

\[(\alpha - \gamma - \gamma)_{\text{corr}} \]

\[(\alpha - \gamma - \gamma)_{\text{uncorr}} \]

Kinematic corrections.
Energy loss corrections in absorbers and target.
\(\alpha - \gamma - \gamma \) timing relationship

Red data are random events
Blue data are after random subtraction
Energy resolution ~ 250 keV
\[|E_\alpha - E_\gamma| < 130 \text{ keV} \]

“•” represent known states from earlier works

“↓” indicate position of an absent transition observed in \((\gamma, \gamma')\) data
Comparison with (γ, γ') data

Observations:

- Relatively larger isoscalar contribution for states $E < 5$ MeV.
- Relatively larger isovector contribution for states $E > 5$ MeV.

(γ, γ') data taken from A. Jung et al., Nucl. Phys. A 584 (1995) 103.
Comparison with \((\gamma, \gamma')\) data

Theoretical calculations:
- RQTBA calculation.
- Qualitatively reproduces the trend of decreasing isoscalar strength with increasing excitation energy.

Comparison with \((\gamma, \gamma')\) data

Theoretical Calculations:
- RQTBA calculation.
- Qualitatively reproduces the trend of decreasing isoscalar strength with increasing excitation energy.
- Transition densities exhibit compressional mode at low energies and isospin mixed mode at higher energies.
Comparison to earlier work with $(\alpha, \alpha' \gamma)$ reaction

Observations:

- Stronger isoscalar response at low energies ($E < 5$ MeV) compared to earlier works.
- No isospin splitting in the pygmy region, i.e. $6 - 8$ MeV.
- Isoscalar response is same for dipole states in this energy region.

(γ, γ') data taken from A. Jung et al., Nucl. Phys. A 584 (1995) 103.
Contribution of Coulomb interaction

For dipole states at $E = 4.55$ MeV

For dipole states at $E = 7.01$ MeV

$\theta_{\text{c.m.}}$ (deg)

$\frac{d\sigma}{d\Omega}$ (mb/sr)

DWBA Calculations (DWUCK4 code)
Using microscopic transitions densities from RQTBA calculations.

Negligible contribution from Coulomb interaction
Conclusions:

- Isospin splitting of PDR is not observed in ^{74}Ge
- Relatively large isoscalar components of dipole states at lower energies ($E < 5$ meV)
- α and γ interact differently with nucleus. (surface vs whole nucleus)
- Importance of complementary probe, alpha, in deducing information.
Collaboration

iThemba LABS, Somerset West, South Africa

P. Papka, R. Newman

University of Stellenbosch, Stellenbosch, South Africa

J. N. Orce, N. Erasmus

University of the Western Cape, Bellville, South Africa

S. Bvumbi and L.P. Masiteng, University of Johannesburg, Johannesburg, South Africa.

E.G. Lanza and A. Vitturi

INFN, Sezione de Catania, Italy

INFN Sezione de Padova, Italy

E. Litvinova

Western Michigan University, Kalamazoo, USA

L. A. Bernstein, D. L. Bleuel, and B. Daub

Lawrence Livermore National Laboratory, Livermore, USA

A. Görgen, M. Guttormsen, A. C. Larsen, S. Siem, T. Renstrom,

University of Oslo, Oslo, Norway

D.G. Roux

Rhodes University, Grahamstown, South Africa

Thank You
RESULTS cont....

Particle Spectrum with α banana gate

γ-ray Spectrum