

Identical features of the semi-magic seniority isomers beyond doubly-magic cores

Bhoomika Maheshwari and Ashok Kumar Jain

Department of Physics, IIT Roorkee, India

Atlas of Nuclear Isomers

Outline

- Isomers beyond doubly magic cores: ¹³²Sn and ²⁰⁸Pb
- The semi-magic chains:
 - Z=50 (N=84-88) and N=82 (Z=52-62)
 - Z=82 (N=128-134) and N=126 (Z=84-90)
- 6⁺ isomers common in Z=50 and N=82 beyond ¹³²Sn
- 8⁺ isomers common in Z=82 and N=126 beyond ²⁰⁸Pb
- 6⁺ isomers different valence spaces in Z=50 and N=82
- 8⁺ isomers different valence spaces in Z=82 and N=126
- Still we witness identical features!
- Common factor: Seniority
- Seniority scheme and Large Scale Shell Model (LSSM) calculations for energies and B(E2) values presented

Seniority – important signatures

Valence spaces involved and origin of isomers

- Z=50, 6⁺ isomers: Neutrons (f_{7/2}, p_{3/2}, p_{1/2}, h_{9/2}, f_{5/2}, i_{13/2})
- N=82, 6⁺ isomers: Protons (g_{7/2},d_{5/2},h_{11/2},d_{3/2},s_{1/2})
- Z=82, 8⁺ isomers: Neutrons (g_{9/2}, i_{11/2}, j_{15/2}, d_{5/2}, s_{1/2}, g_{7/2}, d_{3/2})
- N=126, 8⁺ isomers: Protons $(h_{9/2}, f_{7/2}, i_{13/2}, f_{5/2}, p_{3/2}, p_{1/2})$
- These isomers have been interpreted mainly as single-j seniority isomers, arising from the highlighted orbits.
- We find that the other orbits also play an important role and a multi-j character is necessary to explain B(E2) systematic.
- Note the same set of orbits in Z=50 and N=126. However, different ordering results in isomers with different spins.

Identical features of 6+ and 8+ isomer energies

I I T ROORKEE 🔳 🔳 📕

Large Scale shell model calculations

7

B(E2) values from Seniority scheme

$$B(EL) = \frac{1}{2J_{i}+1} \left\| \left(J_{f} \left\| \sum_{i} r_{i}^{L} Y^{(L)}(\theta_{i}, \phi_{i} \right\| J_{i} \right) \right\|^{2}$$

In single-j case,
$$\Omega = \frac{1}{2}(2j+1)$$
$$\left\| \sum_{i} r_{i}^{L} Y^{(L)}(\theta_{i}, \phi_{i}) \right\| j^{n} v l' J_{i} \right\rangle = \left(\frac{\Omega - n}{\Omega - v} \right) \left\langle j^{v} v l J_{f} \left\| \sum_{i} r_{i}^{L} Y^{(L)}(\theta_{i}, \phi_{i}) \right\| j^{v} v l' J_{i} \right\rangle$$
$$\left\langle j^{n} v l J_{f} \left\| \sum_{i} r_{i}^{L} Y^{(L)}(\theta_{i}, \phi_{i}) \right\| j^{n}, v \mp 2, l' J_{i} \right\rangle = \sqrt{\frac{(n - v + 2)(2\Omega + 2 - n - v)}{2(2\Omega + 2 - 2v)}} \left\langle j^{v} v l J_{f} \right\| \sum_{i} r_{i}^{L} Y^{(L)}(\theta_{i}, \phi_{i}) \right\| j^{v}, v \mp 2, l' J_{i} \right\rangle$$

It is easy to generalize these results for multi-j case with degenerate orbits by defining, $\tilde{j} = j \otimes j' \dots \qquad \Omega = \frac{1}{2} \sum_{i} (2j+1) \qquad n = \sum_{j} n_{j}$

$$B(E2) \propto \left(\frac{\Omega - n}{\Omega - v}\right)^2, \Delta v = 0$$
$$B(E2) \propto \frac{(n - v + 2)(2\Omega + 2 - n - v)}{2(2\Omega + 2 - 2v)}, \Delta v = 2$$

B(E2) relations valid for single-j, and multi-j cases!!

IIT ROORKE

B. Maheshwari, A. K. Jain (To be published)

B(E2)s in Z=82 and N=126 chains – seniority

B. Maheshwari, A. K. Jain (To be published)

B(E2)s from seniority (single-j) and generalized seniority (multi-j)

6⁺ seniority isomers beyond ¹³²Sn

B. Maheshwari, A. K. Jain and P. C. Srivastava, Phys. Rev. C 91, 024321 (2015)

11

A small change in TBME & seniority mixing

B. Maheshwari, A. K. Jain and P. C. Srivastava, Phys. Rev. C 91, 024321 (2015)

RCDBMO: modified RCDB by reducing the diagonal and non-diagonal $uf_{7/2}^2$ TBME by 25 keV.

I I T ROORKEE 🔳 🗖

BE2s in the N=82: comparison with LSSM

I I T ROORKEE

BE2s of the 8⁺ isomers in the Z=82 and N=126 – comparison with LSSM

All BE2s are in Weisskopf Units

I I T ROORKEE 🔳 🗖 🖡

Brief

- Atlas of nuclear isomers lists about 2469 isomers with a half-life \geq 10 ns.
- Seniority isomers due to E2 transitions in various semi-magic chains have been studied.
- Their identical features have been understood on the basis of seniority.
- This simple scheme gives one a chance to explore the neutron-rich nuclei, as well as study their similarities and differences with the neutrondeficient ones.
- Possibility to explore the nuclear extremes.
- Large Scale shell model calculations help to validate these results.
- The inclusion of seniority mixing via a small change in TBME in n-rich Sn isomers is required.
- May help predict unknown B(E2)s and also unknown isomers.

Thank you !