Towards the self-consistent and relativistic study of spin-isospin excitations in deformed nuclei

Haozhao LIANG (梁豪兆)

RIKEN Nishina Center, Japan

September 17, 2015

COMEX5,, September 14-18,, 2015,, Krakow

Contents

- Introduction
- □ Theoretical framework
- □ Spin-isospin resonances in spherical nuclei
- Covariant DFT on 3D mesh
 - ground-states calculations with inverse Hamiltonian method
 - excited-states calculations with finite amplitude method
- Summary and Perspectives

Nuclear spin-isospin physics

Nuclear spin-isospin excitations

- > β -decays in nature
- charge-exchange reactions in lab

These excitations are important to understand

"What are the spin and isospin properties of nuclear force and nuclei?" (nuclear physics)

"Where and how does the rapid neutron-capture process (r-process) happen?" (astrophysics)

(p, n) (n, p)

Z+1, N-1 Z, N Z-1, N+1

Key exp. @ RIKEN RCNP CERN GSI MSU TRIUMF

"Are there only three families of quarks in nature?" (particle physics)

Covariant density functional theory

- Fundamental: Kohn-Sham Density Functional Theory
- Scheme: Yukawa meson-exchange nuclear interactions talks by Khan, Meng, ...

$$\begin{aligned} \mathscr{L} &= \vec{\psi} \left[i\gamma^{\mu} \partial_{\mu} - M - g_{\sigma} \sigma - \gamma^{\mu} \left(g_{\omega} \omega_{\mu} + g_{\rho} \vec{\tau} \cdot \vec{\rho}_{\mu} + e \frac{1 - \tau_{3}}{2} A_{\mu} \right) - \frac{f_{\pi}}{m_{\pi}} \gamma_{5} \gamma^{\mu} \partial_{\mu} \vec{\pi} \cdot \vec{\tau} \right] \psi \\ &+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} \\ &+ \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} - \frac{1}{2} m_{\pi}^{2} \vec{\pi} \cdot \vec{\pi} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \end{aligned}$$

Comparing to traditional non-relativistic DFT

Effective Lagrangian

connections to underlying theories, QCD at low energy

- Dirac equation HZL, Meng, Zhou, Phys. Rep. 570, 1-84 (2015) consistent treatment of spin d.o.f. & nuclear saturation properties (3-body effect)
- Lorentz covariant symmetry

unification of time-even and time-odd components

Dirac and RPA equations

- $\succ \text{ Energy functional of the system (Hartree or Hartree-Fock)}$ $E[\rho] = \langle \Phi_0 | \mathcal{H} | \Phi_0 \rangle = E_k + E_{\sigma}^D + E_{\omega}^D + E_{\rho}^D + E_A^D + E_{\sigma}^E + E_{\omega}^E + E_{\rho}^E + E_{\pi}^E + E_A^E$
- Dirac equations for the ground-state properties

$$\int d\mathbf{r}' h(\mathbf{r}, \mathbf{r}') \psi(\mathbf{r}') = \varepsilon \psi(\mathbf{r}), \quad \text{with} \quad h^{\mathrm{D}}(\mathbf{r}, \mathbf{r}') = \left[\Sigma_{T}(\mathbf{r})\gamma_{5} + \Sigma_{0}(\mathbf{r}) + \beta \Sigma_{S}(\mathbf{r})\right] \delta(\mathbf{r} - \mathbf{r}'),$$
$$h^{\mathrm{E}}(\mathbf{r}, \mathbf{r}') = \begin{pmatrix} Y_{G}(\mathbf{r}, \mathbf{r}') & Y_{F}(\mathbf{r}, \mathbf{r}') \\ X_{G}(\mathbf{r}, \mathbf{r}') & X_{F}(\mathbf{r}, \mathbf{r}') \end{pmatrix}.$$

RPA equations for the vibrational excitation properties

$$\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ -\mathcal{B} & -\mathcal{A} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega_{\nu} \begin{pmatrix} X \\ Y \end{pmatrix}$$

□ $\delta E/\delta \rho \rightarrow$ equation of motion for nucleons: Dirac (-Bogoliubov) equations □ $\delta^2 E/\delta \rho^2 \rightarrow$ linear response equation: (Q)RPA equations

Gamow-Teller resonances

CDFT+RPA for Gamow-Teller resonances (with both Hartree & Fock terms)

Physical mechanisms of GTR

With only Hartree terms

- No contribution from isoscalar *o* and *w* mesons, because exchange terms are missing.
- \square π -meson is dominant in this resonance.
- **g'** has to be retted to reproduce the experimental data.

With both Hartree & Fock terms

- Isoscalar σ and ω mesons play an essential role via the exchange terms.
- $\square \pi$ -meson plays a minor role.
- **\Box** g' = 1/3 is kept for self-consistency.

HZL, Giai, Meng, Phys. Rev. Lett. **101**, 122502 (2008) HZL, Zhao, Ring, Roca-Maza, Meng, Phys. Rev. C **86**, 021302(R) (2012) **CDFT+RPA** for Spin-dipole resonances ($\Delta S = 1, \Delta L = 1, J^{\pi} = 0^{-}, 1^{-}, 2^{-}$)

(Exp.) Wakasa et al., PRC 84, 014614 (2011); (Theory) HZL, Zhao, Meng, Phys. Rev. C 85, 064302 (2012)

a crucial test for the theoretical predictive power cf. Dozono's talk

β decays and *r*-process

> EURICA project is providing lots of new β -decay data towards *r*-process path.

β decays and *r*-process

Nuclear β -decay rates and *r*-process flow ($Z = 20 \sim 50$ region)

FRDM+QRPA: widely used nuclear input RHFB+QRPA: our results

Niu, Niu, HZL, Long, Niksic, Vretenar, Meng, Phys. Lett. B 723, 172 (2013)

✓ Classical *r*-process calculation shows a faster *r*-matter flow at the N = 82 region and higher *r*-process abundances of elements with $A \sim 140$.

From spherical to deformed

Our goals: To study the physics in exotic deformed nuclei

- correct asymptotic behavior
- ➢ to break all geometric symmetries
- exotic shapes / exotic excitation modes
- reasonable computational time

To develop CDFT on 3D mesh: ground states & excitations

Zhou, Meng, Ring, Zhao, Phys. Rev. C 82, 011301(R) (2010)

Deformation-Driven *p*-Wave Halos at the Drip Line: ³¹Ne

PRL 112, 242501 (2014) PHYSICAL REVIEW LETTERS

Observation of a p-Wave One-Neutron Halo Configuration in ^{37}Mg

Imaginary time step method

Imaginary time step (ITS) method

$$\lim_{\tau \to \infty} e^{-h\tau} \left| \psi^{(0)} \right\rangle = \lim_{\tau \to \infty} \sum_{i} c_{i} e^{-\epsilon_{i}\tau} \left| \phi_{i} \right\rangle \propto \left| \phi_{1} \right\rangle$$

ITS has been realized for Skyrme Hartree-Fock calculations on 3D Cartesian mesh. Davies, Flocard, Krieger, Weiss, Nucl. Phys. A 342, 111 (1980)

see, e.g., Zhang, Sagawa, Yoshino, Hagino, Meng, Prog. Theor. Phys. 120, 129 (2008)

To solve Dirac equations in 3D space

- Challenge I: Variational collapse
- Challenge II: Fermion doubling

ITS for Dirac equations

> ITS for Dirac equations

```
\{\boldsymbol{\alpha} \cdot \mathbf{p} + \beta[\boldsymbol{M} + \boldsymbol{S}(\mathbf{r})] + \boldsymbol{V}(\mathbf{r})\}\phi(\mathbf{r}) = \epsilon\phi(\mathbf{r})
```


□ ITS evolution leads to contamination of single-paticle states by the Dirac sea. Variational collapse Stanton & Havriliak, J. Chem. Phys. 81, 1910 (1984)

To avoid variational collapse

➤ To avoid variational collapse: maximizing □1/h □ instead of minimizing □h □ Hill & Krauthauser, Phys. Rev. Lett. 72, 2151 (1994)

 $\square h$ is unbounded, but 1/h is bounded.

Inverse Hamiltonian method

Inverse Hamiltonian method

$$\lim_{\tau \to \infty} e^{\tau/(h-w)} \left| \psi^{(0)} \right\rangle = \lim_{\tau \to \infty} \sum_{i} c_{i} e^{\tau/(\epsilon_{i}-w)} \left| \phi_{i} \right\rangle \propto \left| \phi_{1} \right\rangle$$

For a small step // Hagino & Tanimura, Phys. Rev. C 82, 057301 (2010)

$$\left|\psi^{(n+1)}\right\rangle = e^{\Delta\tau/(h^{(n)}-w)} \left|\psi^{(n)}\right\rangle \simeq \left(1 + \frac{\Delta\tau}{h^{(n)}-w}\right) \left|\psi^{(n)}\right\rangle = \left|\psi^{(n)}\right\rangle + \Delta\tau \left|\varphi^{(n)}\right\rangle$$

with

$$\left(h^{(n)}-w
ight)\left|arphi^{(n)}
ight
angle=\left|\psi^{(n)}
ight
angle$$

TO SOLVE KNOWN

Iterative methods

□ Of the form Ax = b can be solved iteratively, e.g., Krylov subspace method Saad, Iterative Methods for Sparse Linear Systems (2003)

 \succ do not need the matrix element of A

 $(h^{(n)} - w)$

> only need the result of Ay for any given y

CR=Conjugate Residual, (Bi)CG=(Bi-)Conjugate Gradient, GP=Generalized Product

Fermion doubling (I)

□ Dirac Fermion on lattice → spurious states with high momentum and low energy

- Solutions of 1D Dirac equation
- Physical and spurious states have the same energy, and mix with each other.

Fermion doubling (II)

- □ Dirac Fermion on lattice → spurious states with high momentum and low energy
- 1D Dirac equation in coordinate space 3.5 $(-i\alpha\partial_x + \beta M)\phi(x) = \epsilon\phi(x)$ 3 e.g. 2.5 $\partial_x \phi(x) \rightarrow \frac{\phi(i+1) - \phi(i-1)}{2a}$ 2 [I] 1.5 1D Dirac equation in momentum space $(\alpha \frac{1}{2}\sin(pa) + \beta M)\tilde{\phi}(p) = \epsilon\tilde{\phi}(p)$ 0.5 0 0 **Dispersion relation** $\epsilon^2 = M^2 + p^2 \quad \rightarrow \quad \epsilon^2 = M^2 + \frac{\sin^2(pa)}{r^2}$

Tanimura, Hagino, HZL, Prog. Theor. Exp. Phys. 2015, 073D01 (2015)

To eliminate fermion doubling

Wilson Fermion:

a famous problem in lattice QCD Wilson, Phys. Rev. D 10, 2445 (1974)

$$H_W = -i\boldsymbol{\alpha}\cdot\nabla + \beta[\boldsymbol{M} + \boldsymbol{S}(\mathbf{r})] + V(\mathbf{r}) - \boldsymbol{a}\boldsymbol{R}\beta\Delta$$

Dispersion relation (1D, no potential)

Single-particle energies and wave functions

Single-particle energies and wave functions

Higher-order Wilson terms: less effect on physical states, stronger effect on spurious states.
Tanimura, Hagino, HZL, Prog. Theor. Exp. Phys. 2015, 073D01 (2015)

Application in self-consistent CDFT

- > Potential energy surfaces (PES) of > Tetrahedral (Y_{32}) solution in ⁸⁰Zr ²⁴Mg and ²⁸Si

Excitations in 3D CDFT

Computational challenge for the excitations in deformed systems

A promising solution:

Finite amplitude method (FAM)

Nakatsukasa, Inakura, Yabana, *Phys. Rev. C***76**, 024318 (2007)

review: Nakatsukasa, PTEP 2012, 01A207 (2012)

data from Avogadro & Nakatsukasa, Phys. Rev. C 87, 014331 (2013)

TDHF and linear response equation

> The static HF equation $[h[\rho], \rho] = 0$ determines the ground-state density $\rho = \rho_0 (\rho^2 = \rho)$ and $h_0 = h[\rho_0]$.

With a time-dependent external perturbation,

 $i\frac{d}{dt}\delta\rho(t) = [h_0, \delta\rho(t)] + [\delta h(t) + V_{\text{ext}}(t), \rho_0], \qquad \delta\rho(t) \equiv \rho(t) - \rho_0$

For given frequencies *w*,

$$\omega\delta\rho(\omega) = [h_0, \delta\rho(\omega)] + [\delta h(\omega) + V_{\text{ext}}(\omega), \rho_0]$$

By introducing the single-particle (Kohn-Sham) orbitals

$$\rho_{0} = \sum_{i=1}^{A} |\phi_{i}\rangle\langle\phi_{i}|, \qquad h_{0}|\phi_{\mu}\rangle = \epsilon_{\mu}|\phi_{\mu}\rangle$$

$$\rho(t) = \sum_{i=1}^{A} |\psi_{i}(t)\rangle\langle\psi_{i}(t)|, \qquad |\psi_{i}(t)\rangle = (|\phi_{i}\rangle + |\delta\psi_{i}(t)\rangle)e^{-i\epsilon_{i}t}$$

$$\delta\rho(t) = \sum_{i=1}^{A} \{|\delta\psi_{i}(t)\rangle\langle\phi_{i}| + |\phi_{i}\rangle\langle\delta\psi_{i}(t)|\}, \qquad \delta\rho(\omega) = \sum_{i=1}^{A} \{|X_{i}(\omega)\rangle\langle\phi_{i}| + |\phi_{i}\rangle\langle Y_{i}(\omega)|\}$$

Conventional RPA

$$\succ \text{ Expanding } |X_i(\omega)\rangle = \sum_{m>A} |\phi_m\rangle X_{mi}(\omega) \text{ and } |Y_i(\omega)\rangle = \sum_{m>A} |\phi_m\rangle Y_{mi}^*(\omega)$$

RPA equations

$$\left\{ \begin{pmatrix} \mathcal{A}_{mi,nj} & \mathcal{B}_{mi,nj} \\ \mathcal{B}_{mi,nj}^* & \mathcal{A}_{mi,nj}^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X_{nj}(\omega) \\ Y_{nj}(\omega) \end{pmatrix} = - \begin{pmatrix} f_{mi}(\omega) \\ g_{mi}(\omega) \end{pmatrix}$$

where the matrix elements of particle-hole residual interactions

$$\mathcal{A}_{mi,nj} \equiv (\epsilon_m - \epsilon_i) \delta_{mn} \delta_{ij} + \left\langle \phi_m \left| \frac{\partial h}{\partial \rho_{nj}} \right|_{\rho = \rho_0} \right| \phi_i \right\rangle = (\epsilon_m - \epsilon_i) \delta_{mn} \delta_{ij} + \left\langle \phi_m \phi_j \left| V_{ph} \right| \phi_n \phi_i \right\rangle$$
$$\mathcal{B}_{mi,nj} \equiv \left\langle \phi_m \left| \frac{\partial h}{\partial \rho_{jn}} \right|_{\rho = \rho_0} \right| \phi_i \right\rangle = \left\langle \phi_m \phi_n \left| V_{ph} \right| \phi_j \phi_i \right\rangle$$

□ Density-dependent couplings → rearrangement terms in particle-hole residual interactions V_{ph}.
 □ In relativistic RPA, particle states m, n include unoccupied states in both Fermi and Dirac sea. Ring, Ma, Giai, Vretenar, Wandelt, Cao, Nucl. Phys. A 694, 249 (2001)

Finite Amplitude Method

> Starting from

 $\omega\delta\rho(\omega) = [h_0, \delta\rho(\omega)] + [\delta h(\omega) + V_{\text{ext}}(\omega), \rho_0], \qquad \delta\rho(\omega) = \sum_{i=1}^{A} \{|X_i(\omega)\rangle\langle\phi_i| + |\phi_i\rangle\langle Y_i(\omega)|\}$

➤ Multiplying with ket $|\phi_i\rangle$ and bra $\langle \phi_i|$ of hole states, respectively $\omega |X_i(\omega)\rangle = (h_0 - \epsilon_i)|X_i(\omega)\rangle + \hat{Q}(V_{\text{ext}}(\omega) + \delta h(\omega))|\phi_i\rangle$ $\omega \langle Y_i(\omega)| = -\langle Y_i(\omega)|(h_0 - \epsilon_i) - \langle \phi_i|(V_{\text{ext}}(\omega) + \delta h(\omega))\hat{Q}$

FAM technique

 $\delta h(\omega) = \frac{1}{\eta} (h[\langle \psi'|, |\psi\rangle] - h[\langle \phi|, |\phi\rangle]) \quad \text{with} \quad \langle \psi'_i| = \langle \phi_i| + \eta \langle Y_i(\omega)|, \quad |\psi_i\rangle = |\phi_i\rangle + \eta |X_i(\omega)\rangle$ $\delta h^{\dagger}(\omega) = \frac{1}{\eta} (h[\langle \psi'|, |\psi\rangle] - h[\langle \phi|, |\phi\rangle]) \quad \text{with} \quad \langle \psi'_i| = \langle \phi_i| + \eta \langle X_i(\omega)|, \quad |\psi_i\rangle = |\phi_i\rangle + \eta |Y_i(\omega)\rangle$

- **To solve these equations iteratively** Ax = b
- In $h[\psi', \psi]$, bra and ket are independent \rightarrow non-vanishing time-odd currents
- □ **Rearrangement terms** ← re-calculate coupling strengths with each new density

Effects of Dirac sea on ISGMR

HZL, Nakatsukasa, Niu, Meng, Phys. Rev. C 87, 054310 (2013); Phys. Scr. 89, 054018 (2014)

- The existence of Dirac sea does not introduce extra difficulties for FAM.
 In r-space representation, the effects of Dirac sea can be included implicitly and automatically.
- ✓ This effect on m_1/m_0 of ISGMR: ²⁰⁸Pb **4.00 MeV** & ¹³²Sn **4.26 MeV**

Effects of rearrangement terms on ISGMR

HZL, Nakatsukasa, Niu, Meng, Phys. Rev. C 87, 054310 (2013); Phys. Scr. 89, 054018 (2014)

✓ In FAM, NO extra computational costs due to the rearrangement terms.
 ✓ This effect on m₁/m₀ of ISGMR: ²⁰⁸Pb 0.53 MeV & ¹³²Sn 0.26 MeV

Summary and Perspectives

- □ The self-consistent and relativistic description of spin-isospin excitations in spherical nuclei.
- \Box Towards the exotic deformed nuclei \rightarrow CDFT on 3D mesh
- Ground-state calculations
 - ✓ Challenge I: *Variational collapse* ← inverse Hamiltonian method
 - ✓ Challenge II: *Fermion doubling* ← (higher-order) Wilson terms
- Excited-state calculations
 - ✓ Computational challenge ← finite amplitude method

To study the spin-isospin physics in exotic deformed nuclei

Acknowl edgments

INFN-Milan	Gianluca Colò, Xavier Roca-Maza, Yifei Niu
Anhui U.	Jian-You Guo, Zhongming Niu
Tohoku U.	Kouichi Hagino
RIKEN	Tetsuo Hatsuda, Takashi Nakatsukasa, Kazuko Tanabe, Shinya Wanajo,
Tokyo Tech.	Chikako Ishizuka
RISP	Youngman Kim, Yeunhwan Lim
Beihang U.	Zhaoxi Li
Lanzhou U.	Wen Hui Long
Peking U.	Jie Meng, Shihang Shen
Zagreb U.	Tamara Nikšić, Dario Vretenar
TU München	Peter Ring
IPN-Orsay	Yusuke Tanimura, Nguyen Van Giai
Osaka U.	Hiroshi Toki
Argonne	Pengwei Zhao
ITP-CAS	Shan-Gui Zhou
T	hank vou!

CDFT+RPA in charge-exchange channel

Particle-hole residual interactions HZL, Giai, Meng, Phys. Rev. Lett. 101, 122502 (2008)

 $\succ \sigma\text{-meson} \qquad V_{\sigma}(1,2) = -[g_{\sigma}\gamma_0]_1[g_{\sigma}\gamma_0]_2 D_{\sigma}(1,2)$

- $\succ \omega \text{-meson} \qquad \qquad V_{\omega}(1,2) = [g_{\omega}\gamma_0\gamma^{\mu}]_1 [g_{\omega}\gamma_0\gamma_{\mu}]_2 D_{\omega}(1,2)$
- $\succ \rho\text{-meson} \qquad V_{\rho}(1,2) = [g_{\rho}\gamma_{0}\gamma^{\mu}\vec{\tau}]_{1} \cdot [g_{\rho}\gamma_{0}\gamma_{\mu}\vec{\tau}]_{2}D_{\rho}(1,2)$
- > pseudovector π -N coupling

$$V_{\pi}(1,2) = -\left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{0}\gamma_{5}\gamma^{k}\partial_{k}\right]_{1}\cdot\left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{0}\gamma_{5}\gamma^{\prime}\partial_{\prime}\right]_{2}D_{\pi}(1,2)$$

> zero-range counter-term of π -meson

$$V_{\pi\delta}(1,2) = g'[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\boldsymbol{\gamma}]_1 \cdot [\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\boldsymbol{\gamma}]_2\delta(\mathbf{r}_1-\mathbf{r}_2), \quad g'=1/3$$

\Box For the correct asymptotic behavior, g' is not a parameter, but must be 1/3.