Collective Excitations in 166Re and 162W by Means of γ-ray Spectroscopy and Lifetime Measurements

Hongjie Li

Royal Institute of Technology, Stockholm Sweden

hongjiel@kth.se

September 17, 2015
Contents

Background and Motivation
 The neutron-deficient A~160 nuclei

Experimental Setups
 JYFL: JUROGAM II + RITU + GREAT

Data Analysis and Results
 Rotational bands and Lifetime Measurements in 166Re
 Recoil-decay Tagging Spectroscopy of 162W

Summary
Collectivity and Deformation

\[R = R_0 [1 + \sum \alpha_\mu Y_{2\mu}(\theta, \phi)] \]

\[\alpha_0 = \beta \cos \gamma, \quad \alpha_{-2} = \alpha_2 = \beta \sin \gamma \]

\[\delta R_x = \sqrt{\frac{5}{4\pi}} R_0 \beta \cos[\gamma - \frac{2}{3}\pi] \]

\[\delta R_y = \sqrt{\frac{5}{4\pi}} R_0 \beta \cos[\gamma - \frac{4}{3}\pi] \]

\[\delta R_z = \sqrt{\frac{5}{4\pi}} R_0 \beta \cos \gamma \]
Moller Chart of Nuclides 2000
Quadrupole Deformation

http://ie.lbl.gov/systematics/chart_thb2.pdf
Collective excitations in 166Re and 162W

Background and Motivation

The neutron-deficient $A\sim160$ nuclei

<table>
<thead>
<tr>
<th>162Pt</th>
<th>163Pt</th>
<th>164Pt</th>
<th>165Pt</th>
<th>166Pt</th>
<th>167Pt</th>
<th>168Pt</th>
<th>169Pt</th>
<th>170Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>161Ir</td>
<td>162Ir</td>
<td>163Ir</td>
<td>164Ir</td>
<td>165Ir</td>
<td>166Ir</td>
<td>167Ir</td>
<td>168Ir</td>
<td>169Ir</td>
</tr>
<tr>
<td>160Os</td>
<td>161Os</td>
<td>162Os</td>
<td>163Os</td>
<td>164Os</td>
<td>165Os</td>
<td>166Os</td>
<td>167Os</td>
<td>168Os</td>
</tr>
<tr>
<td>159Re</td>
<td>160Re</td>
<td>161Re</td>
<td>162Re</td>
<td>163Re</td>
<td>164Re</td>
<td>165Re</td>
<td>166Re</td>
<td>167Re</td>
</tr>
<tr>
<td>158W</td>
<td>159W</td>
<td>160W</td>
<td>161W</td>
<td>162W</td>
<td>163W</td>
<td>164W</td>
<td>165W</td>
<td>166W</td>
</tr>
<tr>
<td>157Ta</td>
<td>158Ta</td>
<td>159Ta</td>
<td>160Ta</td>
<td>161Ta</td>
<td>162Ta</td>
<td>163Ta</td>
<td>164Ta</td>
<td>165Ta</td>
</tr>
<tr>
<td>156Hf</td>
<td>157Hf</td>
<td>158Hf</td>
<td>159Hf</td>
<td>160Hf</td>
<td>161Hf</td>
<td>162Hf</td>
<td>163Hf</td>
<td>164Hf</td>
</tr>
<tr>
<td>155Lu</td>
<td>156Lu</td>
<td>157Lu</td>
<td>158Lu</td>
<td>159Lu</td>
<td>160Lu</td>
<td>161Lu</td>
<td>162Lu</td>
<td>163Lu</td>
</tr>
</tbody>
</table>

$^92\text{Mo}(^{78}\text{Kr}, 3pn)^{166}\text{Re}$

$^92\text{Mo}(^{78}\text{Kr}, 2\alpha)^{162}\text{W}$
Prior knowledge of excited states in 166Re and 162W

\(\alpha\)-decay of 170Ir

B. Hadinia \textit{et al.}, PRC76, 044312 (2007)

Experimental Details

- Reactions: $^{92}\text{Mo}(^{78}\text{Kr}, 3\text{pn})^{166}\text{Re}$
- $^{92}\text{Mo}(^{78}\text{Kr}, 2\alpha)^{162}\text{W}$
- $E_{\text{beam}}=380$ MeV
- Accelerator: K-130 cyclotron
- Target: 0.6-mg/cm2 ^{92}Mo
- DPUNS Plunger: 1-mg/cm2 Mg degrader with the distances of 5, 100, 200, 500, 1000, 2000, 3000, 5000, 8000 μm
- JUROGAM II + RITU + GREAT
- Beam time: ~7 days

Figure courtesy of Dave Seddon (Liverpool)
Collective excitations in ^{166}Re and ^{162}W

Hongjie Li @ Kraków COMEX5

Data Analysis and Results

Rotational bands and Lifetime Measurements in ^{166}Re
Routhian & Alignment & Cranked Routhian Calculations

(a) Graph showing the energy levels $e'(\text{MeV})$ versus rotational frequency $\hbar\omega (\text{MeV})$. The bands for ^{164}W, ^{167}Re, ^{165}W, ^{166}Re band (1), and ^{166}Re band (2) are plotted.

(b) Graph showing the alignment $i_x (\hbar)$ versus rotational frequency $\hbar\omega (\text{MeV})$.
Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Data Analysis and Results

Rotational bands and Lifetime Measurements in 166Re

B(M1)/B(E2) & Signature Splitting & Particle Rotor Model

Calculations

![Graph](image)

Band (1): $\pi h_{11/2} \otimes \nu_{i_{13/2}}$

- Exp.
- $\pi h_{11/2} \otimes \nu_{i_{13/2}}$
- $\pi h_{11/2} \otimes \nu_{h_{9/2}}$
- PRM

Band (2): $\pi h_{11/2} \otimes \nu(f_{7/2}h_{9/2})$

- Exp. Without V_{pn}
- With V_{pn}
Lifetime Measurements of Excited States

\[\begin{array}{c}
166\text{Re} \\
(16^-) \\ 358 \\ 734 \\
(15^-) \\ 714 \\ 376 \\
(14^-) \\ 649 \\ 338 \\
(12^-) \\ 526 \\ 296 \\
(10^-) \\ 225 \\ 353 \\
(9^-) \\ 437 \\ 301 \\
(8^-) \\ 597 \\ 212 \\
(7^-) \\ 333 \\ 358 \\
(6^-) \\ 714 \\ 331 \\
(5^-) \\ 338 \\ 333 \\
(4^-) \\ 437 \\ 338 \\
(3^-) \\ 597 \
\end{array} \]

- Lifetime $\leq 1.2(2)$ ps
- Lifetime $480(50)$ ps
- Lifetime $30(8)$ ps

\[\begin{align*}
B(M1)/B(E2) & \mu^2/\mu, \epsilon^2/\epsilon^2 \\
B(M1) & \mu^2, \epsilon^2 \\
B(E2) & \epsilon^2/\epsilon^2
\end{align*} \]

- TAC-RMF x 0.3
- Semi-classical
- TAC-RMF x 0.3
- Semi-classical
- TRS
- TAC-RMF

11 / 18
Level Scheme & Systematic Comparison & Total Routhian Surface

\[E_{4^+} / E_{2^+} = 2.1 \quad 2.3 \quad 2.5 \quad 2.7 \quad 2.8 \]

\[^{158}W[1] : \nu(f_{7/2}h_{9/2})^8^+ \text{ isomer} \]

Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Data Analysis and Results

Recoil-decay Tagging Spectroscopy of 162W

Routhian & Alignment & Cranked Routhian Calculations

![Graph](https://via.placeholder.com/150)

- **Graph (a)**: Data for 162W, 164W, and 160Hf.
- **Graph (b)**: Plot of i_x vs. $\hbar \omega$ for different isotopes.

Graph (a) includes lines labeled A, B, E, and F with specific quantum numbers.

Graph (b) includes points labeled e and f with quantum numbers.

Legend:
- A: $i_{13/2}[560]1/2 (+1/2)$
- B: $i_{13/2}[660]1/2 (-1/2)$
- E: $(f_{7/2}[532], h_{11/2}[525])3/2 (-1/2)$
- F: $(f_{7/2}[532], d_{9/2}[527])3/2 (+1/2)$
- e: $h_{11/2}[514]9/2 (-1/2)$
- f: $h_{11/2}[514]9/2 (+1/2)$
Half-life Measurements of α-decaying States

Bell-shaped fitting function:

$$|\frac{dn}{dt}| = n_0 \exp (\Gamma + \lambda) \exp (-\exp(\Gamma + \ln \lambda)),$$

$$\Gamma = \ln(t)$$
Collective excitations in ^{166}Re and ^{162}W

Hongjie Li @ Kraków COMEX5

Summary

- First identification of two rotational bands
- Backbending of band (1) may originate from $i_{13/2}$ BC crossing
- Signature inversion in band (2) is reproduced by PRM with mixed $\pi h_{11/2} \otimes \nu[f_{7/2}/h_{9/2}]$ configuration
- Lifetimes of three excited states have been measured
- Possibility of magnetic rotation has been tested

^{166}Re

- Identification of a rotational band with RDT technique
- Band crossing may associate with $\nu[f_{7/2}/h_{9/2}]$ alignment
- Half-life of α-decay ground state has been measured, a big deviation with the adopted value

^{162}W
First identification of rotational band structures in $^{166}_{75}$Re$_{91}$

H. J. Li,1,2,* M. Doncel,1 M. Patial,1 B. Cederwall,1 T. Bäck,1 U. Jakobsson,1,3 K. Auranen,3 S. Böning,4 M. Drummond,5 T. Grahn,3 P. Greenlees,3 A. Herzáň,3 D. T. Joss,5 R. Julin,3 S. Juutinen,3 J. Konki,3 T. Kröll,4 M. Leino,3 C. McPeake,5 D. O’Donnell,5 R. D. Page,5 J. Pakarinen,3 J. Partanen,3 P. Peura,3 P. Rahkila,3 P. Ruotsalainen,3,† M. Sandzelius,3 J. Sarén,3 B. Sayğ,5,† C. Scholey,3 J. Sorri,3 S. Stolze,3 M. J. Taylor,6 A. Thorndhaite,5 J. Uusitalo,3 and Z. G. Xiao2

1Department of Physics, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
2Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
3University of Jyväskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyväskyla, Finland
4Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
5Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
6School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

(Received 9 March 2015; revised manuscript received 26 June 2015; published 16 July 2015)

Excited states in the odd-odd, highly neutron-deficient nucleus 166Re have been investigated via the 92Mo(78Kr, 3$\text{p}_{1\text{g}}$)166Re reaction. Prompt γ rays were detected by the JUROGAM II γ-ray spectrometer, and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and implanted into the Gamma Recoil Electron Alpha Tagging spectrometer located at the RITU focal plane. The tagging and coincidence techniques were applied to identify the γ-ray transitions in 166Re, revealing two collective, strongly coupled rotational structures, for the first time. The more strongly populated band structure is assigned to the $\pi h_{11/2}[514]9/2^- \otimes \nu l_{13/2}[660]1/2^+$ Nilsson configuration, while the weaker structure is assigned to be built on a two-quasiparticle state of mixed $\pi h_{11/2}[514]9/2^- \otimes \nu [h_{9/2},f_{7/2}]3/2^-$ character. The configuration assignments are based on the electromagnetic characteristics and rotational properties, in comparison with predictions from total Routhian surface and particle-rotor model calculations.

DOI: 10.1103/PhysRevC.92.014310 PACS number(s): 21.10.Rc, 23.20.Lv, 25.70.Jj, 27.70.+q
Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α)162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α-decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a γ-soft minimum at $\beta_2 \approx 0.15$. Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state α-decay energy and half-life were also performed. The observed α-decay energy agrees with previous measurements. The half-life of 162W was determined to be $t_{1/2} = 990(30)$ ms. This value deviates significantly from the currently adopted value of $t_{1/2} = 1360(70)$ ms. In addition, the α-decay energy and half-life of 166Os were measured and found to agree with the adopted values.

DOI: 10.1103/PhysRevC.92.014326 PACS number(s): 21.10.Re, 23.20.Lv, 25.70.Jj, 27.70.+q
Collective excitations in ^{166}Re and ^{162}W

Hongjie Li @ Kraków COMEX5

— Summary

▶ Octupole Correlations in $^{147,152}\text{Ce}$

▶ Multi-phonon γ-vibrational bands in ^{138}Nd and ^{105}Nb

▶ Traxiality in ^{99}Tc

▶ Band Structure and Lifetime Measurements in odd-odd ^{166}Re
 H. J. Li *et al.*, Submitted to PRC in 2015, Lifetime measurements in ^{166}Re

▶ Collectivity in ^{162}W and odd-odd ^{138}Pm

Thank you!
Proton Drip Line

Difficulties:

⇒ Low cross section: Competition with fast fission

⇒ Selectivity: Too many open reaction channels, Low α-decay branching ratio (^{166}Re)

courtesy of RD Page, LISA presentation

VMI

“Ground state bands” in even-even nuclei:
Rotational term: $\frac{\hbar^2 I(I+1)}{2J_I} +$ Potential term: $\propto (J_I - J_0)^2$

The level energy: $E_I = \frac{1}{2} C(J - J_0)^2 + \frac{1}{2} [I(I+1)/J].$
(C: “restoring force constant”, J_I: moment of inertia for each state with spin I)

The equilibrium condition for each spin I: $\partial E(J)/\partial J = 0$

Each nucleus is characterized by (J_0, σ)
(J_0 is the moment of inertia of the ground state, σ is a “softness parameter”, $\sigma = 1/2CJ_0$)

Back to
Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Backup

B(M1)/B(E2)

\[
B(M1; \ell \rightarrow \ell - 1) = |\langle \ell \ell | \mu(M1) | \ell - 1 \ell - 1 \rangle|^2 = \frac{3}{8\pi} \mu^2 \\
\mu_\perp = \frac{K}{I} \left[(g_1 - g_R)(\sqrt{I^2 - K^2} - i_1) - (g_2 - g_R)i_2 \right]
\]

\[
\frac{B(M1;l \rightarrow l - 1)}{B(E2:l \rightarrow l - 2)} = 0.697 \frac{1}{\lambda} \frac{E_\gamma^5(E2)}{E_\gamma^3(M1)} \frac{1}{1 + \delta^2} \left[\frac{\mu^2_N}{e^2 b^2} \right] \text{ (exp.)}
\]

\[
= \frac{12}{5Q_0^2 \cos^2(\gamma + 30\degree)} \left[1 - \frac{K^2}{(I - 1/2)^2} \right]^{-2} \frac{K^2}{I^2} \times \left[(g_1 - g_R)(\sqrt{I^2 - K^2} - i_1)(1 \pm \frac{\Delta e'}{\hbar \omega}) - (g_2 - g_R)i_2 \right]^2 \text{ (theo.)}
\]

F. Dönau and S. Frauendor, High angular momentum properties of nuclei, 1983
Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Total Routhian Surface

$\beta_2 \sim 0.17$

$\pi(-, -1/2)\nu(+, +1/2)$

$\pi(-, -1/2)\nu(-, +1/2)$

$\pi(+, -1/2)\nu(+, +1/2)$
Collective excitations in 166Re and 162W

162W-TRS

$Y = \beta_2 \sin(\gamma + 30^\circ)$

$X = \beta_2 \cos(\gamma + 30^\circ)$
Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Backup

166Re γ-X-ray Coincidence

162W α tagging

99Tc-DCO

$\gamma-\gamma$ Coincidence

red: 40°--823.0 at 90°
blue: 90°--823.0 at 40°
Recoil Decay Tagging experiments with the gas-filled magnetic separator RITU

\[B \rho = \frac{mv}{q_{\text{ave}}} \approx 0.0227 \frac{A}{Z^{1/3}} \, \text{[Tm]}, \quad v/c \approx 0.04, \quad \text{time-of-flight} \approx 0.5 \, \mu\text{s} \]
Collective excitations in 166Re and 162W

Hongjie Li @ Kraków COMEX5

Fingerprints of Radioactive Ion Beam Facilities

- RIBF at RIKEN in Japan
- SPIRAL2, SPES and FAIR in Europe
- FRIB in USA
- RIBLL in China
- RAON (happy) in South Korea (HIA)
- and so on...

Tracking Spectrometers

- AGATA in Europe
- GRETA in USA

Open Questions

- Consistent explanation of signature inversion
- Lack of lifetime data on odd-odd nuclei

Backup

Outlook