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Motivation

Giant Monopole Resonance (GMR) centroid Egyg is connected with finite —
nucleus incompressibility K, by (see e.g. J.Blaizot, Phys. Rep. 64, 171 (1980))

2
Ecvr = " KzA
m(rv)
The incompressibility (together with
the nucleus mass and radius) belongs GMR is the subject of intensive
to the bulk properties used for the investigation from 60-s up to
determination of the energy functional now

(n-n effective interaction ) parameters

From the point of view of theory the position of Egy is usually obtained by
means of moments of energy weighted EO strength functions

m
EGMR = %no

A A
where M/‘lfzzo(el)=Z(rZYOO)i Is the isoscalar EO transition operator
i=1

m, = [ dE S, (E0; E)

)7

S (E0;E)=Y E*[(v|M{®) (el)|0) P S(E-E,)



Motivation

Using this approach alot of papers analyzing centroids of GMR appeared:
- some of the latest:

P. Avogadro, C.A.Bertulani, PRC 88, 044319 (2013)

P.Vesely, J.Toivanen, B.C.Carlsson, J.Dobaczewski, M.Michel, A.Pastore,
PRC 86, 024303 (2012)

L.Cao, H.Sagawa, G.Coldé, PRC 86, 054313 (2012)

P.Avogadro, T.Nakatsukasa, PRC 87, 014331 (2013)

K.Yoshida, T.Nakatsukasa, PRC88, 034309 (2013)

Analyses performed in these papers (based on the GMR centroids calculated
iIn terms of the RPA) showed that the energy — density - functional (EDF)
approaches with the incompressibilities K, ® 230 MeV give the good agreement
with the experimentally determined centroids in 2°¥Pb and 44Sm. However,

the experimental data on Sn (see T.Li, U.Garg, et al., PRL 99, 162503 (2007) ) and
Cd (see D.Patel, et al., Phys.Lett. B 718, 447 (2012) ) cannot be reproduced equally
well with the same functionals in the comparison with Pb-Sm data.

In papers P.Avogadro, et al., PRC88, 044319 (2013) and P.Vesely, , et al., PRC 86, 024303
(2012) the modification of the pairing interaction was used for the explanation of
the problem of the simultaneous reproduction of Sn-Cd and Pb-Sm data.

(F) y n =0 -volume pairing
Vpair(F’F')=V06(F_F') - Vpair(F’F')=V0[1_ﬂ(p) ]6(F_F')

0 n=1 - surface pairing




Motivation

However, these attempts of the solving of the problem of the simultaneous

reproduction of Sn-Cd and Pb-Sm data by the new type of the pairing have
not helped.

In the paper K.Yoshida, T.Nakatsukasa, PRC88, 034309 (2013) microscopical fully
self-consistent Skyrme QRPA analyses of the shape evolution of giant
resonances of different types (ISGMR including):

double-peak structure of the GMR in deformed nuclei is caused by the mixing of EO

and E2 modes (the higher peak is a primal ISGMR and the lower peak is induced by
the E2-EO mixing from ISGQR)

in spite of the fact that in this paper the calculated energy distribution of GMR is
shown only the comparison of calculated positions (centroids) and widths of
the GMR with corresponding experimental values was performed — relatively
good agreement for Sm isotopes was obtained

So, in spite of the fact that the experimental energy distributions of the ISGMR
are available for 44 14Sm the comparison with experimental values was done
only for positions (centroids) and widths of the ISGMR (theoretical positions
and widths were determined by the fitting of one- (for spherical nuclei) or
two- (for deformed nuclei) Lorentzians to the calculated values of the isoscalar
EO excitation probability for individual RPA solutions)



Motivation

There are two main groups in the world providing the data on EO resonance,
namely:

Texas A&M University (TAMU):

D.H.Youngblood, et al., PRC69, 034315 (2004) - 116Sn, 208pp, 144Sm, 154Sm
D.H.Youngblood, et al., PRC69, 054312 (2004) - %0Zr
D.H.Youngblood, et al., PRC88, 021301(R) (2004) - ®2Zr, ®2Mo, %°Zr, ®Mo, %Mo, Mo, %Mo

Research Center for Nuclear Physics (RCNP) at Osaka University
M.Uchida, et al., PRC69, 051301 (2004) - 99Zr, 116Sn, 208pf
M.ltoh, et al., PRC68, 064602 (2003) - 144Sm, 148Sm, 150Sm, 1525m, 154Sm
T.Li, et al., PRC99, 162503 (2007) - 112-124g5n

All these papers give not only GMR centroids but also shapes of the GMR and

both experimental groups used (a,a’) reaction for the determination of EO
strength functions. However, in the case when both groups measured EO

strength function for the same nucleus ( °%Zr, 144154Sm, 298Ph ) one can see
substantial differences in the EO strength functions between both groups

(mentioned already in P.Avogadro, et al., PRC88, 044319 (2013) ).



Motivation

@® In spite of the fact that the experimental shapes of EO strength functions are
available for many spherical and also for several deformed nuclei all papers
with theoretical analyses have compared only GMR centroids determined by
simple expr. Eggr=" or widths (determined by the fitting of Lorentzian
to calculated values of the excitation probabilities of individual RPA solutions)

@ The deeper theoretical analyses of the GMRs were done in the paper K. Yoshida,
T.Nakatsukasa, PRC 88, 034309 (2013) with the Skyrme QRPA approach for SkM*,
SLy4 and SKP Skyrme interactions (for Sm isotopes) but the comparison with
experimental data was done only for positions (centroids) and widths of GMR

We analyze the shape and position of the GMR from the point of

» view of the comparison of the experimental values of the ISGMR
energy distribution with the calculated values with different Skyrme
parametizations for a broad ensemble of Sm, Pb, Sn, Mo isotopes
(not only position and width). EO strength is also determined for some
superheavy nuclei.

Deformation effect (double peak structure of the GMR) is illustratively
demonstrated in terms of the Separable RPA (SRPA) approach

Energy distribution of the ISGMR in spherical and deformed nuclei is
analyzed from the point of view of different Skyrme parametrizations
(with different incompressibility modulus)



Theoretical background - SRPA

In this contribution two theoretical approaches are used:
1. separable RPA (sRPA) -1 code
2. standard RPA (fRPA) - 2 codes

Separable RPA

SRPA = modification of the RPA based on the Skyrme energy functional
for axially deformed nuclei using multi-dimensional response approach

coupled scheme (spherical nuclei)
m- scheme (deformed nuclei)

V.O.Nesterenko, J.Kvasil, P.-G.Reinhard, PRC66, 044307 (2002) - formulation of SRPA
V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard, PRC74, 064306 (2006) - GDR

P.Vesely, J.Kvasil, V.O.Neterenko, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomareyv,
PRC80, 0313012(R) (2009) - M1 giant resonance

V.O.Nesterenko, J.Kvasil, P.Vesely, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomareyv,
J. Phys. G37, 064034 (2010) - M1 giant resonance

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, P.Vesely, PRC84, 034303 (2011) -
toroidal and compression E1 modes

A.Repko, P.-G.Reinhard, V.O.Nesterenko, J.Kvasil, PRC87, 024305 (2013) -
toroidal nature of low-lying E1 modes

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard, N.Lo ludice,
Eur. Phys. J. A49, 119 (2013) - toroidal, compression E1 modes



Theoretical background - sRPA

The sRPA starts with the Skyrme energy functional (see Appendix B for details):
Ep.13,],5T=E,+E«+E&,, +&,,
Basic idea of the sSRPA: nucleus is excited by external s.p. fields: (QAk’F';k)’k=1""’ K
Qi =Q ; TQT'=Q, ; [H,Ql=-iP,
Pr=P,_ ; TPRT'==P ; [H,RP]=-iQ
The optimal set of generators (ék, |3k) was discussed in: £17

<« Modes
V.0.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard, PRC 74, 064306 (2006)

P.Vesely, J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomarev, PRC. 80, 031302(R) (2009)

J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, P.Vesely, PRC 84, 034303 (2011) 09°
0665 N\‘&“\
Using linear response theory correspondmg W
Hamiltonian is: H h SeParable pe.:
+ V Self-congicy '9Yal intey. .
HEB mean field HFB res ean fieslstentl tain:;:';n

o0& -

D) CYS S ST AY
HFB_Id r 4 GJd+(r) Ji. Vies == 2 Z K X K+ e Yy Yo

where &, My Xk,Yk are given by the 2-d derivatives of the functional &

with respect to densities and currents » no free paramerters except those
of the Skyrme functional



Theoretical background — full RPA

Total Hamiltonian consists from the BCS (HFB) mean field and residual
Interactions: 52E

H =hoes +, Zjdrj 3'&(”53 (S O3

with the standard full RPA equation
[ A B] ) (EV 0 J c)
B A" )lc¥ 0 -E,J{c¥

( 1)k+l, 00 8
P = Z 24+1 I&J &,

with

Jj”(r) ‘]d a(r)ridr + ;i ki &

(Jd)( 1)k+|' [ 528 A A* 2
B = Z 21 +1 j;aJdaJd' I (r) I (r) redr

The solving of the sRPA (orﬂfRPA equations gives the forward and backward
amplitudes Ci(jv_) and Cijv of the phonon creation operator

+ _ (v=) + .+ (v+)
Q (ﬁﬂ)—Z(Cij & aj —G “i“i‘)
1> ]
with corresponding phonon energy E,




Theoretical background

Knowing the structure and energies of one-phonon states one can determine
the strength function of given transition operator (in our case the monopole

electric operator A
2
M/(lli,)u=0(6|)=2(r YOO)i
|

with the corresponding energy weighted strength function:

S (EG;E) =Y (E)* [(v|M_(el)|[RPAY S(E-E,)

= SdEO E)= 2 (E) (v IME, (N |RPAYF &,(E-E,)

ape width Where &,(E-E,) isthe Lorentz weight function

A

Configurations

1
gA(E_Ev)= 2
2% (E - EV)2+A4



Dependence of EO strength function in the spherical nuclei (heavier 208Pb,144Sm;
lighter 112, 116, 124Sn) on Skyrme parametrizations with different K

parametrizations with
K~230 MeV fits the
experimental values
for heavier nuclei
(Sm, Pb)

experimental values

for lighter Sn isotopes
require parametrizat-
ions with the lower
values of K (K~200
MeV like SkP?)

differences in RCNP
and TAMU data
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: : ) comparison of SRPA results with TAMU and
144-154
GMR in the isotopes Sm RCNP exp. data

TAMU data renormalized for absolute units:
S,(r’Y,,; fm*MeV ™) =S, (r?Y,,; fraction EWSR MeV *)x EWSR  xE™

2

different shapes of EWSR, = ml(rZYoo) = e A <r2>
exp. GMR for TAMU 2zxm
and RCNP data: SVbas
much bigger defor- 500, Volume pairing 500
mation effect in “Sm . %S
400 400 m
TAMU data 300 . p=0.0 300: B=0.16
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GMR in 1%4Sm - coupling of EO and E2 modes

involving the E2 field
D (r’Y,) among the
external exciting fields
in the SRPA calculation
of GMR improves the
agreement with the
TAMU GMR data

the volume and surface
pairing give practically
the same results
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GMR in isotopes 196-116Cd

Comparison of the sRPA (vithout and with
EO-E2 mixing) with the fRPA results and with
experimental data

small discrepancies
between sRPA and fRPA

in 110-116Cd the fRPA
agrees better with the
experimental data

(at least in the positions
of maxima)
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Comparison of the GMR in *Sm calculated with SV-bas and SkP?
parametrizations in the framework of sRPA (without and with EO-E2
mixing) and fRPA with corresponding experimental data

small discrepancies
between sRPA and
fRPA

the SV-bas Skyrme
interaction gives
better agreement with
experiment
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EO and E2 strength functions in Nd isotopes
(the comparison with experimental GMR centroids)

in the deformed case
the position of the 1-st
GMR maximum agrees
with the position of the
maximum of the E2
K=0 strength
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GMR in 172Yb and 238U

the position of the 1-st
GMR maximum agrees
with the position of the
maximum of the E2
K=0 strength

l position of isoscalar E20 centroid
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GMR in superheavy nuclei

the position of the
1-st GMR maximum
agrees with the
position of the
maximum of the E2
K=0 strength
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Conclusion

Positions of the GMR depends on the incompressibility of the nuclear
matter. The better agreement of calculated and exp. GMR values was
obtained for parametrizations with K ~230 MeV for heavier nuclei
(144Sm, 298Pb) while with K ~ 200 MeV for lighter nuclei (112.116.124G5n)

Significant deformation effect observed in the TAMU GMR data is
In the agreement with the SRPA and fRPA results ( double-peak
structure of the GMR in deformed nuclei)

Double-peak structure of the GMR for deformed nuclei is caused by
the coupling of E2 and EO modes for nonzero deformation (original
Idea — U.Garg, et al., PRC29, 93 (1984))

There are discrepancies between TAMU and RCNP experimental data
from the point of view of the shape of GMR

Volume and surface pairing give the similar results (confirmation of
previous results)

Theoretical analyses and comparison with exp. values of the GMR
cannot be restricted only onresonance centroids (the shape of EO
strength function is important)



Thank you for your attention




Appendix A: Spurious mode connected with the number of particles

In the energy interval E > 8 MeV
the influence of the spurious
mode is very small

154Sm
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FIG. 2. (Color online) The isoscalar 0" strength function (av-
eraged with Lorentzians having 1 MeV widith) including spu-
rious state (line with circles) or not (line with squares) in
12080 - using- the- Skyrme- force SLy5 and the volume pairing

force.



Appendix b: Brief formulation of the SRPA approach

(more details)
Starting energy functional:

E(Q2())=<®®) A M) >=[7(r.t) d°r

where |W(1)> is the time-dependent Slater determinant or
time-dependent quasiparticle vacuum. Time-dependent densities and

currents are: Jo(r,)=<P(t)| I (r) | P(t) >

Time-dependent Slater determinant | ¥(t) > can be related to the
equilibrium Slater determinant | > by (see E.Lipparini, S.Stringari,
Nucl.Phys. A371, 430 (1981))

| () >= 1__[ ﬁexp[— 100, (1)— <0, >) c’jrk] eXp[_ 1, (t) Isz'k]|>

r=n,p k=1
with T-even generators QTk and T-odd generators I5Tk :

Q:k=Qrk ; TQz‘kT—1=Qz‘k : [H’ Qrk]=_i Iﬁrk
|51-||-< = |5‘t'k : T IﬁrkT_l = Iﬁrk : [ H’ Isz-k] =—1 Qrkzz



d,,.(t) and p_, (t) are T-even and T-odd periodically
time- dependent deformations, respectively:

0, (1) =< ()| Q,, | P(t)> p,, () =<F(t)| P, | ¥(t)>

<q,>=<|Q, |> <p,>=<|P,|>=0

The equilibrium Slater determinant (HF ground state) is given by the
HF equation which gives also the HF mean field:

" OE ». . A e
(=Y . J*(r) h0=jho(r)d3r

In the small amplitude limit (up to the linear order in the deformations
d,.(t) and p_ (1) the time- dependent Slater determinant is:

|W(t)>=]|>+]|0¥(t) >
10%(t)>=—i Y [(q. () -<a,>) P, + P () O, ]1>

23



Therefore for the time-dependence of densities:

| Jo(r,t) = J(r) + &%(r,t)
with

&7(r,H)=<¥t)[I7(N | F(t)>—<|I=(r)|> =

==Y {@.(0-<a. > <I[P. 32 ]>+ pa<i[0. 320)]1> }

and tsi;milarly for time-dependent (vibrating) s.p. mean field:
h(r,t)=~h,(r)+h_(r,t)

where h (F) is the static HF ‘mean field and time- dependent vibrating
part is A

res ) 2[63 ( )]&JT, (r’t)=

o G (r)m (] WEED T2

- Z{(qu(t) — <0, >) er(r) + pz‘k(t)Y’\rk(F) }

h ()= [d° h(F,1) \ \ 2




h
e <I[A,, B> =<I[A_, B.]j>=0

A A <|[A,,B_]|>#0 here TA T =+A,
xrk(r)=2x;fk(r)= —_

=ifd°r Z [6J (r)aJ ()] P 7P 90

where o, enumerates T- even densities
a_ enumerates T- odd densities

Y’;k(F)=ZYA:,;(F)= k=1,---,K z=n,p

=ifd AT ()m () SIQu I (I I 5(F)

wih R, = (R (r) d°r Y = [V, (r) d°r
and T er T = er TVTk T = _Yz'k“



Similarly as for j % we can write for the time-
dependent variations of X and Y

<8R, (0> =< F(O)| Koy () > —<| X, 5=
= Z(qr'k' (1)—<0d, >) Kr_li-,r’k'

oY, () >=<P)|Y, |Pt)>-<|Y, |>=
_Zprk(t)ﬂrkrk

: ~1 -1
where we introduced inverse strength constants K.« 'k and v

K;Iiz'k'_K’k’rk_|<|[ @ X l|>=

=Jardr TsIlP, I (1 [aJa+(§)';%(F)]<|[F1,k,,53*(F')]|>

A

Mrcee = Mowe ok =1 <[ [Quie s P J1> =

3 3.0 - Sa 2 aZE a0
_Id rjd r0§<|[Q,k,J, (r)]|>[an_(F,)an,_(F)]<|[QT,k,,JT, (F)]|>




For t(rﬁ determination of the vibrating shifts d,, (t)—<0,, > and
pz'k B 1 : :
d,(t)—<q,, >=0;, cos(at) = 2qrvk (e +e™")

v AV A 1 AV I —iw
pz‘k(t)= pz'k Sln(wt) = 2 pz‘k (e t_e t)

the TDHF or TDHFB approach can be used starting from the Thouless
theorem for the the vibrating Slater determinant:

[F(t)>,=exp( D, c (b)) [>=1+ D, c(t)b)[>

@=ij,ij,ij @=ij,ij,ij

(v) A+ At (v)- A—iot
c.'(t)=c "e“ +c e

where b;} ,biJ'j ,b;} are two-quasiparticle quasi-boson operators:
b =a af b =a’ af b’ =a a’
j i J y J
with
+ _ _ i — —
<|[bij 1bi’j' 11>=09;; 5]]’ 5ij' 5ji' <|[bij,bi,j, 11>=46 5”' 5ij' 5ji'

<|[b;,bi 1|>=6; &;;

27



Using q
i dt | T(t) >v — [ h0 + hres(t)] | T(t) >v

we can express C. =C. (0., P,) toobtain alternative expressions for
,<OX, (1)>, and , <Y, (t) >, through C (0, Pi) . By comparison
with previous ones we finallly have a system of equations for unknown

amplitudes (), p:k

(XX) (XY) —
{ rk'[rk'rk k'z'k] + z'k' Fz'k'z'k }_O
r'k'

~V (YX) (YY) -1 —
Z{ Oz Fz"k',z'k rk' [ 7'k’ 7K nt'k',fk] } =0
lel

kk'=1--- K 7,7'=n,p

where we introduced following matrices:



AA Ew <w|A1k’|><w|A1k|> - ~ 2
r(k’ZK Z Z PERPN. A= XorY
WET w | 24

o=ij,ij,ij

@ <w|A:'k'|><w|’&:k|>

- (AB) (BA) Z Z 1%
r'k',rk rk T k" T 2 2
weT gw - a)v

w=ij,ij,i]

where & are two-quasiparticle energies:
— E+E, form=1]

£&,== FE+E for@=ij

— E,+E, for@=i]

- the matrix of the eq. system for q:k and p:k is symmetric and
real

* this eq. system has nontrivial solution only if the determinat of its
matrix is zero,F(a)V) = det F(a)v) = (0 -dispersion equation for @,
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It can be shown that the eq. system for q," « and p;’ K
is the same as that one obtained from the standard RPA equations:

[HRPA’ O:]=a)v O: [HRPA’ Ov]=_wv Ov

A A + .
[O0,,0, ]1=9,,
with the RPA Hamiltonian:

A

H .., = h, +V

res

(Sep)

where h is the HF average field and V is the residual

mteractlon (see p. 3):

(sep) _ (1) y (1) (1) v D)
Vres ZZ{ rk 7'k’ Xz'k Xz'k + nrk 'k’ Yz'k Yz'k }

tk 7'k’
k,k’= 1,---,K

1 1
Xik) ,Y,(k) =%  p-h (two-qp) part of corresponding operator
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where Q: is the phonon creation operator:

QF = Z{ W(v 7) bt — ¢Z(Uv,z') b, }

T=N,p,@ET
o=1],1],1]
with two-quasiparticle amplitudes:
gl <@ | X5y |>—|Zp(v) <@ |Yi.|>
v.T 7'k’
vy =48,
E,— 0,

> aql <@ | X |> +|Zp(V) <@ |Yi.|>

gy =48, "

E,+ @,
where
1/4 form=1]
¢, = 1/4 foro=ij

1/2 form=ij
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Advantages of the SRPA:

« instead of the construction and dlagonallzatlon of huge | matrlces it
is sufficient to solve the system of egs. for q,k and p with
matrix of the dimension 4K ( K is the number of (Q P modes)

* in the opposite to the standard separable interaction RPA the SRPA
method gives the receipt for the determination of the strength
constant K., ..and 77, .

- only a few correctly chosen exciting modes (Qk , Pk) are sufficient
for the description of each giant resonance of given type and
multipolarity



