Experimental Studies of Few-Body Interactions

Dynamics of few-body interactions studied in new-generation experiments

Stanisław Kistryn Jagiellonian University

Kraków, Poland

The 5th International Conference on COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS"

September 14-18, 2015 Kraków, Poland

Nucleon-Nucleon Interaction Basis of Nuclear Physics

Modern NN potentials are <u>in general</u> able to

- * reproduce properties of nuclear matter (eq. of state)
- * reproduce (roughly) binding energies of light nuclei
- reproduce global features of the bulk of the scattering observables in 2N and (partly) in 3N systems
- Three-nucleon system is the simplest nontrivial environment to test predictions of observables obtained on the basis of NN potential models
- Introducing concept of three-nucleon forces: genuine (irreducible) interaction of all three nucleons

Three-Nucleon System Standard Interaction Models

Three-Nucleon Scattering at Medium Energies

 \Box Elastic: N + d \rightarrow N + d > Beams of p or d Analyze > Various observables \Box Breakup: N + d \rightarrow N + N + N > Beams of p or d > Various observables Different effects to be traced > Comparisons between channels > Influences of 3NF ... and their interplay ! > Coulomb force action > Relativistic effects

Experimental Tools of Few-Nucleon Physics

Few-Body System Dynamics; St. Kistryn UJ

3NF Effects Elastic Nucleon-Deuteron Scattering

Predictions of NN potentials with 3NF models better reproduce minimum of the d(N,N)d scattering c.s.

3NF Effects Elastic Nucleon-Deuteron Scattering

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

Few-Body System Dynamics; St. Kistryn UJ

Few-Body System Dynamics; St. Kistryn UJ

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

11

Effects small, located at extreme angles only !

Few-Body System Dynamics; St. Kistryn UJ

Persistent A_y Puzzle at Low Energies Elastic Nucleon-Deuteron Scattering

Energy-dependent discrepancy between measured and calculated analyzing power values (both p-d and n-d), not accounted by 3NF nor by P-waves modif.

COMEX5, Kraków; Septemer 14-th, 2015

3N Systems Elastic N-d Scattering

Few-Body System Dynamics; St. Kistryn UJ

Number of observables for the elastic scattering channel, allowing a multidimensional study of 3NF and other effects

- Only fraction has been measured accurately and systematically (RIKEN/RCNP/IUCF/KVI)
- Not completely clear picture
 still much to explore !
- Complementary studies
 needed at much richer field:
 Nucleon-Deuteron Breakup

COMEX5, Kraków; Septemer 14-th, 2015

N-d Breakup Reaction

- □ Coverage of large phase-space regions
- Precise, rich sets of data needed for systematic studies of various effects
- Specific configurations sensitive to different dynamical effects

¹H(d,pp)n measured: directions and energies of two protons, i.e. θ_1, ϕ_1, E_1 θ_2, ϕ_2, E_2

15

Few-Body System Dynamics; St. Kistryn UJ

¹H(d,pp)n Measurements at 130 MeV **Cross Section and Analyzing Power Results**

1800 cross section data points SALAD $\theta_1, \theta_2 = (13^{\circ}) 15^{\circ} - 30^{\circ}; \text{ grid } 5^{\circ}; \Delta \theta = \pm 1^{\circ}$ Phys. 40 (2013) 063101 • $\phi_{12} = 40^{\circ} - 180^{\circ}$; grid $10^{\circ} - 20^{\circ}$; $\Delta \phi = \pm 5^{\circ}$ • S [MeV] = 40 - 160; grid 4; ∆S = ±2 5*800 data points A_x , A_y , A_{xx} , A_{xy} , A_{yy} • $\theta_1, \theta_2 = 15^\circ - 30^\circ$; grid 5° ; $\Delta \theta = \pm 2^\circ$ KVI • $\phi_{12} = 40^{\circ} - 180^{\circ}$; grid 20° ; $\Delta \phi = \pm 10^{\circ}$ Groningen St. Kistryn & E. S Nucl. Part. Phys. • S[MeV] = 40 - 160; grid 8; $\Delta S = \pm 4$ 2700 cross section data points • $\theta_1, \theta_2 = 5^\circ - 13^\circ$; grid 2° ; $\Delta \theta = \pm 1^\circ$ FZ Jülich • $\phi_{12} = 20^{\circ} - 180^{\circ}$; grid 20° ; $\Delta \phi = \pm 5^{\circ}$ • S[MeV] = 40 - 180; grid 8; $\Delta S = \pm 4$ Veto \checkmark 2*300 data points A_x, A_y Target • $\theta_1, \theta_2 = 6^\circ - 12^\circ$; grid 3° ; $\Delta \theta = \pm 1.5^\circ$ • $\phi_{12} = 60^{\circ} - 180^{\circ}$; grid 40° ; $\Delta \phi = \pm 20^{\circ}$ GeWall $S [MeV] = 40 - 160; grid 16; \Delta S = \pm 8$

Stephan

J. Phys. G:

16

MWPC

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Discrepancies Cured

Predictions with Coulomb reproduce data much better !

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Examples

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

18

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – 3NF & Coulomb Effects

 $\sigma_{th})/\sigma_{exp}$ 0.1 8 0 σ_{exp} **Including Coulomb force** 0 effects improves the agreement with the data at low E_{rel} values Data vs. AV18 -0.1The best agreement Data vs. AV18 + UIX is reached when Data, vs. AV18 + Coulomb both, the Coulomb Data vs. AV18 + UIX + Coulomb force and the 3NF are taken into account ! -0.25 15 20 25 10 30 E_{rel} [MeV]

19

¹H(d,pp)n Measurement at 130 MeV Analyzing Power Results – Parity Test of Data

$$O_{\beta}(\varsigma', \varphi_{12}) = A_{\beta}(\varsigma', \varphi_{12}) + (-1)^{1-\mu} \bullet A_{\beta}(\varsigma', -\varphi_{12})$$

Few-Body System Dynamics; St. Kistryn UJ

¹H(d,pp)n Measurement at 130 MeV Analyzing Power Results – Parity Test of Data

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015 21

¹H(d,pp)n Measurement at 130 MeV Analyzing Power Results

²H(p,pp)n Breakup Reaction Analyzing Powers vs. Cross Sections

23 COMEX5, Kraków; Septemer 14-th, 2015

¹H(d,pp)n Breakup Reaction Polarization Transfer Coefficients

 $E_{d} = 270 \text{ MeV}$ $\theta_{1}, \theta_{2} = 28^{\circ} - 32^{\circ}, \ \Phi_{12} = 180^{\circ}$ $\overrightarrow{\theta_{1}, \theta_{2}} = 180^{\circ} \xrightarrow{p_{12}} \xrightarrow$

Double-scattering experiment for breakup !

K. Sekiguchi et al. Phys. Rev. C 78 (2009) 054008

Few-Body System Dynamics; St. Kistryn UJ

²H(p,pp)n vs. ²H(p,d)p Spin-Isospin Selectivity

E_p = 190 MeV

 $\theta = 14^{\circ} - 30^{\circ}$

H. Mardanpour *et al.*, Phys. Lett. B **687** (2010) 149

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

3NF + Coulomb Effects Hoyle State of ¹²C

State of ¹²C enabling the process of fusion $3\alpha \rightarrow {}^{12}C$ in star burning (¹²C catalyst in CNO cycle)

Nuclear Lattice Simulations

Only by taking into account both effects, Coulomb force and 3NF (at NNLO), it is possible without fitting (ab initio) to obtain the right sequence of states

3N Systems N-d Breakup Reaction

- Variety of observables and configurations (wide ph.sp.) for the breakup reaction, field of tests for different dynamic ingredients
- Sets (a few only) of rich, systematic and precise data are (at last) available
- Picture very ambiguous still much to be learnt !
- Comparisons between beam energies - need of new variables

Four-Nucleon Systems

E_d = 130 MeV

 $\theta = 15^{\circ} - 30^{\circ}$

A. Ramazani-Moghaddam-Arani *et al.* Phys. Rev. C **83** (2011) 024002

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

4N Systems : First Calculations above Breakup Threshold

29

4N Systems : First Calculations above Breakup Threshold

Few-Body System Dynamics; St. Kistryn UJ

COMEX5, Kraków; Septemer 14-th, 2015

30

4N Systems : ²H(d,dp)n Measurement at 160 MeV (preliminary)

Few-Nucleon Systems Summary

□ Rich, systematic and precise sets of data available

- (elastic scattering many, breakup a few)
 - basis for comparing different approaches which predict the 3N system observables
- Showed significant 3NF effects
- □ Found large influence of the Coulomb force on c.s.
- Relativistic effects to be studied in detail
- Interplay of different ingredients of 3N system dynamics inspection started !
 - $\hfill\square$ Discrepancies \rightarrow hints of imperfections in 3NF models
- General picture not quite clear needed studies to provide evidences of trends in deficiencies

1073

2014)

50

Syst. 48 (2010)

Sagara, Few-Body

M Z

Kalantar

Kistryn

Stephan

Few-Nucleon Studies Outlook & Wishes

Prospects for further results:

- > Evaluating the data accumulated in several experiments at KVI and COSY
- > More measurements:
 - > Japan: RIKEN, RCNP, RIBF, ...
 - Projects @ COSY Jülich
 - > BINA @ IFJ PAN Cracow

BINA detection system moved from KVI to CCB in 2012

Personal, surely incomplete view

33

BINA at Cyclotron Center Bronowice

Few-Body System Dynamics; St. Kistryn UJ

BINA at CCB – Expected Results

pd Breakup Reaction at 50-250 MeV/A

Measurement of $d\sigma/d\Omega(\theta)$ of p + d elastic scattering at 108, 135 and 160 MeV

- 108 MeV data exist (cross check)
- 135 MeV discrepancy between data sets
- 160 MeV no data
- all three energies in one experiment - good control over normalization to luminosity

Further plans – polarized ²H target

Few-Nucleon Studies Outlook & Wishes

Prospects for further results:

> Evaluating the data accumulated in several experiments at KVI and COSY

> More measurements:

- > Japan: RIKEN, RCNP, RIBF,
- > Projects @ COSY Jülich
- > BINA @ IFJ PAN Cracow

36

Personal, surely incomplete view Awaited theoretical achievements:

- > 3NF at $N^{3}LO$ (close ahead...)
- > ChPT with Δ (work in progress...)
- Realistic potentials with Coulomb
- Relativistic potentials with 3NF
- > Rigorous calculations for 4N system (dream comes true ?)

Few-Body Systems Remain Attractive !

Few-Body System Dynamics; St. Kistryn UJ