Nuclear clustering and excitations in the EDF approach

J.-P. Ebran, E. Khan, T. Niksic, D. Vretenar, Nature 487(2012)341 PRC 87(2013)044307 PRC 89(2014)031303(R) PRC 90(2014)054329

- 1) Unified microscopic approach
- 2) Clusters predictions
- 3) Excitations: towards comparison with exp.
- 4) Deeper understanding of cluster phenomenon ?

Comex5, 14-18 September 2015, Krakow

1) Unified microscopic approach

Relativistic EDF in nuclei

V and S potentials

EDF method & clusters

• EDF: many-body system mapped into the **one-body density** and its powers, gradient

$$\rho_{0}(\mathbf{r}) = \rho_{0}(\mathbf{r}, \mathbf{r}) = \sum_{\sigma\tau} \rho(\mathbf{r}\sigma\tau; \mathbf{r}\sigma\tau) \qquad \mathbf{j}_{T}(\mathbf{r}) = \frac{i}{2} (\nabla' - \nabla) \rho_{T}(\mathbf{r}, \mathbf{r}') \big|_{\mathbf{r}=\mathbf{r}'}$$

$$\rho_{1}(\mathbf{r}) = \rho_{1}(\mathbf{r}, \mathbf{r}) = \sum_{\sigma\tau} \rho(\mathbf{r}\sigma\tau; \mathbf{r}\sigma\tau) \tau \qquad \mathcal{J}_{T}(\mathbf{r}) = \frac{i}{2} (\nabla' - \nabla) \otimes \mathbf{s}_{T}(\mathbf{r}, \mathbf{r}') \big|_{\mathbf{r}=\mathbf{r}'}$$

$$\mathbf{s}_{0}(\mathbf{r}) = \mathbf{s}_{0}(\mathbf{r}, \mathbf{r}) = \sum_{\sigma\sigma'\tau} \rho(\mathbf{r}\sigma\tau; \mathbf{r}\sigma'\tau) \boldsymbol{\sigma}_{\sigma'\sigma} \qquad \mathcal{I}_{T}(\mathbf{r}) = \nabla \cdot \nabla' \rho_{T}(\mathbf{r}, \mathbf{r}') \big|_{\mathbf{r}=\mathbf{r}'}$$

$$\mathbf{s}_{1}(\mathbf{r}) = \mathbf{s}_{1}(\mathbf{r}, \mathbf{r}) = \sum_{\sigma\sigma'\tau} \rho(\mathbf{r}\sigma\tau; \mathbf{r}\sigma'\tau) \boldsymbol{\sigma}_{\sigma'\sigma} \tau \qquad \mathbf{I}_{T}(\mathbf{r}) = \nabla \cdot \nabla' \mathbf{s}_{T}(\mathbf{r}, \mathbf{r}') \big|_{\mathbf{r}=\mathbf{r}'}$$

- Most general antisymmetrised product of nucleonic wavefunctions
- Not any a priori assumption on the nucleons' wave function
- Correlations beyond the mean-field effectively included by the EDF
- Results are obtained in the **intrinsic** frame of the nucleus
- Investigate nuclear structure on the **whole nuclear chart**
- **Relativistic**: the depth of the central potential is **consistently predicted**

2) Predictions

Quadrupole + octupole deformations

Constrained RHB (DDME2) β_2 , β_3 , parity proj.

Parity-projected quadrupole/octupole results

 ${}^{12}C (K^{\pi} = 0^+) PAV$

Towards a global picture

²⁸Si

38.46

00000

31,19

0000

24,03

23.91

Ne

19,29 00

16.75

Mg 0 9.78

Si

CoC

neutron excess

Kanada-En'yo, Horiuchi, PRC 52(1995)647

Effect of the deg. raising

Effect of deformation & excitation

Isotopic dependence

n valence molecular bond

¹⁰Be exc.

Beyond pairing: Quarteting

R. Lasseri, N. Sandulescu

$$\hat{H} = \sum_{i} \epsilon_{i} \left(N_{i}^{\nu} + N_{i}^{\pi} \right) + \sum_{i,j} V_{ij} \sum_{\tau=0,\pm 1} P_{i,\tau}^{\dagger} P_{j,\tau} \qquad \text{(see PRL115(2015)112501, Sept. 9)}$$

3) Excitations: towards comparison with experiment

Excitations modes as clustering signature

- Relativistic + deformation: RQRPAz
- Vibration + rotations: collective Bohr Hamiltonian
- Correlations: IBM mapping

4) Deeper understanding of the cluster phenomenon

Nuclear states

Nuclei: a quantum liquid feature

A. Rios & V. Soma PRL108(2012)012501

<u>B. Mottelson</u> \Rightarrow the concept of independent particle motion is based on the fact that the orbits of individual nucleons are delocalized and reflect the shape and radial dependence of the effective potential over the entire nucleus!

The quantality and the localisation parameter

Mottelson: **quantality** = Quantal kinetic energy/potential energy

$$\Lambda \hat{=} \frac{\hbar^2}{m r_0^2 V_0'}$$

Localisation parameter = Localisation/internucleon distance

$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$

B. Mottelson, Proc. Les Houches school (1996)

Quantality does not take into account finite size effects at work for clusterisation

The depth of the potential

- Ultracold atoms : optical trap of variable depth V₀
 - M. Greiner at al., Nature 415 (2002) 39

• Nuclei : depth of the potential consistently determined (relativisitic)

$$\begin{cases} p \frac{1}{2\tilde{M}(r)} p + W(r) + V_{ls}(r)l.s \end{cases} \varphi_i = \varepsilon_i - \varphi_i \qquad S \approx -400 \text{ MeV} \\ V \approx 320 \text{ MeV} \end{cases} \longrightarrow V_0 \approx 80 \text{ MeV} \end{cases}$$
$$W(r) = [V + S] (r)$$
$$V_{ls}(r) = \frac{1}{2\tilde{M}^2(r)} \frac{1}{r} \frac{d}{dr} (V - S)$$

A way to vary the depth of the potential

Deeper potential leads to localisation

From a nuclear crystal to a nuclear liquid

In finite nuclei: localisation $\boldsymbol{\alpha}$

$$\alpha = \frac{b}{r_0} = \frac{\sqrt{\hbar}A^{1/6}}{(2mV_0r_0^2)^{1/4}}$$

States of matter

Summary

- Rel. EDF provides unified description of nuclear states: liquid drop, cluster and halo
 - Clusters = hybrid states between quantum liquid and crystal
 - Role of localisation, deformation, excitation, n excess
 - Exotic shapes, phase transition
 - Key role of saturation
 - Specific mode of excitation
 - -----> Comparison with Exp. excitation spectra