The use of storage rings and active targets in the study of giant resonances

Nasser Kalantar-Nayestanaki, KVI-CART, University of Groningen

The 5th international conference on "COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS"

Krakow, Poland

September 15, 2015

university of groningen

 kvi - center for advanced radiation technology

Bulk Properties

/ university of groningen

 kvi - center for advanced radiation technology

Example:

The Collective Response of the Nucleus: Giant Resonances

Example:

The Collective Response of the Nucleus: Giant Resonances

Photo-neutron cross sections

Example:

The Collective Response of the Nucleus: Giant Resonances

Why low momentum transfers hadronic scattering?

- ✓ Investigation of Nuclear Matter Distributions along Isotopic Chains:
 - ⇒ halo, skin structure
 - ⇒ probe in-medium interactions at extreme isospin (almost pure neutron matter)
 - ⇒ in combination with electron scattering (ELISe project @ FAIR):
 separate neutron/proton content of nuclear matter (deduce neutron skins)

method: elastic proton scattering <u>at low q</u>: high sensitivity to nuclear periphery

- ✓ Investigation of Giant Monopole Resonance in Doubly Magic Nuclei:
 - \Rightarrow gives access to nuclear compressibility \Rightarrow key parameters of the EOS
 - \Rightarrow new collective modes (breathing mode of neutron skin)

method: inelastic α scattering $\underline{\text{at low q}}$

- ✓ Investigation of Gamow-Teller Transitions:
 - \Rightarrow weak interaction rates for N = Z waiting point nuclei in the rp-process

 \Rightarrow electron capture rates in the pre-supernova evolution (core collapse) method: (³He,t), (d,²He) charge exchange reactions <u>at low q</u>

Kinematics for inverse reaction for ⁵⁶Ni

The EXL Collaboration

Univ. São Paulo **TRIUMF Vancouver IMP** Lanzhou VTT Helsinki **IPN Orsay, CEA Saclay** 6 GSI Darmstadt, TU Darmstadt, Univ. Frankfurt, FZ Jülich, Univ. Giessen, Univ. Mainz, Univ. Munich **INR Debrecen** SINP Kolkata, BARC Mumbai Spokesperson: N. Kalantar (KVI-CART) **KVI Groningen** 18 countries, 34 institutes, ~150 participants **INFN/Univ. Milano** Univ. Teheran Univ. Osaka JINR Dubna, PNPI Gatchina, KRI St. Petersburg, loffe Inst. St. Petersburg, Kurchatov Inst. Moscow **CSIC Madrid, Univ. Madrid** Univ. Lund, Mid Sweden Univ., Univ. Uppsala, Chalmers Inst. Göteborg Univ. Basel Univ. Birmingham, CLRC Daresbury, Univ. Surrey, Univ. York, Univ. Liverpool, Univ. Edinburgh Tbilisi State University, Ilia Chavchavadze State University, Tbilisi, Georgia

university of groningen

 kvi - center for advanced radiation technology

 university of groningen

 kvi - center for advanced radiation technology

First EXL experiment with the existing storage ring at GSI (ESR)

/ university of groningen

 kvi - center for advanced radiation technology

Setup @ ESR

GSI

The new ESR Scattering chamber

Exotic nucle

First results with radioactive beam

October 25, 2012:

First Nuclear Reaction Experiment with Stored Radioactive Beam!!!!

Beam energy 400 MeV/u

First results with radioactive beam ⁵⁶Ni(p,p), E = 400 MeV/u

First results with radioactive beam

• Elastic p-scattering off ⁵⁶Ni (E105), M. von Schmid

First results with radioactive beam

• Elastic p-scattering off ⁵⁶Ni (E105)

First results with radioactive beam

• Elastic alpha-scattering off ⁵⁸Ni (E105) at 100 MeV/u

First results with radioactive beam

• Elastic p-scattering off ⁵⁶Ni and alpha-scattering off ⁵⁸Ni (E105)

The new ESR Scattering chamber

Inelastic scattering, work of J.C. Zamora

First results with radioactive beam Inelastic scattering of alphas from 100 MeV/u ⁵⁸Ni (E105), J.C. Zamora

10² exp. data exp. data L = 0 $E_x = 28.5 \text{ MeV}$ L = 0 $d^2\sigma/d\Omega dE$ [mb/sr MeV] $E_x = 20.5 \text{ MeV}$ L = 1 ${
m d}^2\sigma/{
m d}\Omega{
m d}E$ [mb/sr MeV] 10² L = 1L = 2L = 210¹ total total 10¹ 10⁰ 10⁰ 10^{-1} 0.5 1.5 2.5 2 0 1 3 0.5 1.5 2.5 2 3 0 1 $\theta_{\rm cm}$ [deg] $\theta_{\rm cm}$ [deg] 10^{4} Elastic $E_r =$ 19 MeV 10^{3} Recoil Energy [MeV] 10^{2} 10° 10^{1} 5° 10^{0} 1° $\theta_{\rm c.m.} = 0.5^{\circ}$ 10^{-1} 20 40 60 80 100 0 $\theta_{\text{lab.}}$ [deg] university of kvi - center for advanced radiation technology groningen

First results with radioactive beam Inelastic scattering of alphas from 100 MeV/u ⁵⁸Ni (E105), J.C. Zamora

L = 0RPA ---Fraction of EWSR /MeV 0.1 inal 0.05 0 15 25 35 20 30 10 40 Excitation Energy [MeV] centroid [MeV] **EWSR** [%] 79+12 $21.9^{+0.8}$ present data $21.5^{+3.0}$ PRC 61, 067307 (2000) $20.8^{+0.9}_{-0.3}$ 85^{+13}_{-10} PRC 73, 014314 (2006) RPA calculation [4] 21.1 94

[4] G. Colò et al, Comput. Phys. Commun. 184 (2013)

/ university of groningen

 kvi - center for advanced radiation technology

Measurements with the active target MAYA at GANIL

 kvi - center for advanced radiation technology

Schematic view of MAYA active target detector

Beam Subtraction

Extrapolated beam

Beam subtracted

GSI

/ university of groningen

 kvi - center for advanced radiation technology

Range extraction of recoil track

Peak fitting method

Excitation energy of ⁵⁶Ni at θ_{CM} =5.5°, S. Bagchi

Multipole Decomposition Analysis (MDA)

-

Summary of all Ni isotopes for ISGMR

L=0, T=0 (ISGMR)

Reaction	Gaussian fitting		MDA	
	E*	FWHM	E*	Width (rms)
	[MeV]	[MeV]	[MeV]	[MeV]
⁵⁶ Ni(α,α') ⁵⁶ Ni* (this work)	19.1±0.5	2.0±0.3	18.4±1.8	2.0±1.2
⁵⁶ Ni(d,d') ⁵⁶ Ni*	19.5±0.3	5.2	19.3±0.5	2.3
⁵⁸ Ni(α, α') ⁵⁸ Ni*	$ 18.43 \pm 0.15$	$7.41 {\pm} 0.13$	$ 19.2^{+0.44}_{-0.19}$	$4.89\substack{+1.05 \\ -0.31}$
58 Ni(α, α') 58 Ni*	-	-	$ 19.9^{+0.7}_{-0.8}$	-
60 Ni(α, α') 60 Ni*	17.62 ± 0.15	$7.55 {\pm} 0.13$	$ 18.04^{+0.35}_{-0.23}$	$4.5\substack{+0.97 \\ -0.22}$
⁶⁸ Ni(α,α') ⁶⁸ Ni*	21.1±1.9	$1.3{\pm}1.0$	23.4	6.5
			/ university of	kvi - center for advance

groningen

radiation technology

Monopole mode in ⁵⁸Ni and ⁵⁶Ni: ring vs. active target

Conclusions and outlook

- Large efforts are taking place for both the ring environments as well as for active targets.
- Bulk properties (radius, compressibility etc.) are the main subject of the present low-q measurements.
- The goal is to go towards the medium heavy and heavy nuclei (astrophysical processes).
- First measurements are done with Ni isotopes and results are emerging.
- More measurements are planned with both methods.

Upgrade of the first EXL experiment

The EXL-E105 Collaboration

S. Bagchi¹, S. Bönig², M. Castlós³, I. Dillmann⁴, C. Dimopoulou⁴, P. Egelhof⁴, V. Eremin⁵,
H. Geissel⁴, R. Gernhäuser⁶, M.N. Harakeh¹, A.-L. Hartig², S. Ilieva², N. Kalantar-Nayestanaki¹,
O. Kiselev⁴, H. Kollmus⁴, C. Kozhuharov⁴, A. Krasznahorkay³, T. Kröll², M. Kuilman¹, S. Litvinov⁴,
Yu.A. Litvinov⁴, M. Mahjour-Shafiei¹, M. Mutterer⁴, D. Nagae⁸, M.A. Najafi¹, C. Nociforo⁴,
F. Nolden⁴, U. Popp⁴, C. Rigollet¹, S. Roy¹, C. Scheidenberger⁴, M. von Schmid², M. Steck⁴,
B. Streicher^{2,4}, L. Stuhl³, M. Takechi⁴, M. Thürauf², T. Uesaka⁹, H. Weick⁴, J.S. Winfield⁴,
D. Winters⁴, P.J. Woods¹⁰, T. Yamaguchi¹¹, K. Yue^{4,7}, J.C. Zamora², J. Zenihiro⁹

¹ KVI-CART, Groningen ² Technische Universität Darmstadt ³ ATOMKI, Debrecen ⁴ GSI, Darmstadt ⁵ Ioffe Physico-Technical Institute, St.Petersburger Technische Universität München ⁴ GSI, Darmstät München ⁵ Ioffe Physico-Technical Institute, St.Petersburger Technische Universität München ⁶ Institute of Modern Physics, Lanzhou ⁸ University of Tsukuba ⁹ RIKEN Nishina Center ¹⁰ The University of Edinburgh ¹¹ Saitama University center for advanced ¹¹ radiation technology

Thank you!

/ university of groningen

 kvi - center for advanced radiation technology