Novel scintillator arrays

David Jenkins

USIAS

University of Strasbourg Institute for Advanced Study UNIVERSITY of York

With thanks to Franco Camera, Oli Roberts, Giulia Hull, Roman Gernhaeuser, Paul Davies Funding from NuPNET GANAS, STFC and TSB

State of the art: Gamma-ray tracking

Distance between faces of crystals: in same cluster ~3 mm in adjacent clusters ~9 mm Total weight of the 60 clusters of the AGATA-180 configuration ~2.5 tons Mounted on a self-supporting structure

Typical scintillation detector

PMT - fragile, needs HV but low noise, well-established technology

Sodium iodide - best resolution ~ 7% Hygroscopic Relatively low cost

Energy resolution

Timing resolution

Scintillators for nuclear physics

Inside magnetic field

Cost

4

Particle Physics

Homeland security

Scintillators for nuclear physics

Space science

PET/SPECT

New scintillators

First Generation scintillators

NaI(Tl): energy resolution of 7% at 662 keV, strong non linearity, bad time resolution

BaF₂: bad energy resolution, excellent time resolution

BGO: bad energy resolution, bad time resolution, excellent efficiency

CsI(Tl): good for the measurement of light charged particles

Second Generation scintillators

Lanthanum Halide: LaBr₃:Ce, LaCl₃:Ce New Materials: SrI₂:Eu, CeBr₃ Elpasolide : CLYC:Ce, CLLB:Ce, CLLC:Ce Ceramic: GYGAG:Ce

Material	Light Yield [ph/MeV]	Emission λ _{max} [nm]	En. Res. at 662 keV [%]	Density [g/cm ²]	Pricipal decay time [ns]
Nal:Tl	38000	415	6-7	3.7	230
CsI:TI	52000	540	6-7	4.5	1000
LaBr ₃ :Ce	63000	360	3	5.1	17
Srl ₂ :Eu	80000	480	3-4	4.6	1500
CeBr ₃	45000	370	<5%	5.2	17
GYGAG:Ce	40000	540	<5%	5.8	250
CLYC:Ce	20000	390	4	3.3	1 CVL 50, ~1000

Properties of new scintillators: SrI₂, CeBr₃, GYGAG

- Slow scintillator (decay time ~1.5μs)
- Self absorption
- Excellent energy res. (< 3-4% @ 662 keV)
- It is available on the market
- It can be seen as a 100% doped LaBr₃:Ce
- Fast scintillator (< 1ns time resolution as LaBr₃:Ce)
- Good Energy resolution (< 5% @ 662 keV)
- No internal radiation
- It is available up to 3"x3" on the market
- CoDoping developed in prototypes

- Gd_{1.5} Y_{1.5}Ga_{2.2}Al_{1.8}O₁₂ :Ce Polycrystalline ceramic scintillators
 Density and effective Z of GYGAG are 5.8 g/cm³ and 48
- Very few samples available
 - Good Energy resolution (< 5% @ 662 keV)
 - Fast scintillator (decay time ~ 250 ns)

SrI₂

CeBr₃

GYGAG

Measurements with Srl₂, CeBr₃, GYGAG

Detectors from Livermore and IPN Orsay:

- Cylindrical 2" x 2" SrI₂
- Cylindrical 2" x 3" CeBr₃
- Cylindrical 0.3" x 2" GYGAG

Measurements performed in Milan:

 The crystals were scanned using a collimated beam of 662 keV gamma rays (along the three axes).

- Crystal response was measured using standard sources (⁶⁰Co, ⁸⁸Y, ¹³⁷Cs, ¹⁵²Eu)
- The crystal response of gamma rays was measured at **4.4 MeV and 9 MeV**.
- **Pulses up to 9 MeV** gamma rays were digitized.

Pulses and scan: Srl₂, CeBr₃, GYGAG

Topical examples of arrays

CALIFA forward endcap

N of crystals

Crystal geom.

Tot. Crystal Volume/ weight

> On our way to CALIFA forward endcap...

CEPA: CALIFA Endcap <u>Phoswich</u> Array

CAREFER (EDSINK N

> Phoswich concept: 2 scintillator crystals coupled with a common readout. They must be

optically compatible (LaBr3-LaCl3). It allows for E - Δ E use (telescope for high-E protons) > Prototyping: CEPA4. Tested with high-E protons at *CCB* (Krakow)

FAIR

ERA-NET for Nuclear Physics Infrastructures

750

15

110000 cm³ / 560 kg

PARIS

PARIS (Photon Array for studies with radioactive Ions and Stable beams), a detector for the future, based on new LaBr₃ scintillating crystals (43 laboratories involved) A much better efficiency/resolution

Decay of the resonances will be identified

Possibility 4 – single long (4") LaBr3.

Basic element: a phoswich LaBr3+Nal

The PARIS PHOSWICH at work

Beam 15 MeV electrons: brehmstallung gamma beam on ¹¹B target

17

PARIS Demonstrator MoU

MoU on PARIS Demonstrator (Phase 2) was prepared and agreed to be signed by <u>IN2P3 (France), COPIN (Poland), GANIL/SPIRAL2 (France)</u>, TIFR/BARC/VECC (India), <u>IFIN</u> <u>HH (Romania)</u>, INFN (Italy), Bulgaria, <u>UK</u>, Turkey

Since more than 3 partners already signed it (red), the MoU is effective.

		PAI			
	Phase 1 2011/2012 PARIS cluster	1 cluster: 9 phoswiches		250 k€	Decided Funds: SP2PP, ANR, Orsay, Strasbourg, Kraków, Mumbai
					Tests in-beam and with sources
	Phase 2 2015 PARIS Demonstrator	5 clusters: 45 phoswiches		1100 k€	Only if Phase1 validated Funds: MoU Ph1Day1 exp@S3
	Phase 3 2017 PARIS 2π	12 clusters: 108 phoswiches		≈ 2 M€	Only if Phase2 validated Funds: MoU, PARIS consortium Ph2Day1 exp. with AGATA and GASPARD Other exp.
	Phase 4 ≈2019 PARIS 4π	≥24 clusters: ≥216 phoswiches		≈ 4 M€	Only if Phase3 validated Funds: PARIS consortium Regular experiments in various labs

Future for scintillators

Current research on CeBr₃ co-doping

Scaling up of crystal size; up to ~ 1 cm³ the proportionality improvement is now confirmed

Observation and modeling of the co-doping effect on the scintillation mechanism

Aliovalent co-doping of CeBr₃ (and LaBr₃:Ce) improves the response proportionality

CeBr₃ energy resolution (as for LaBr₃:Ce) can be further enhanced by codoping technique

Slides courtesy of F.G.A. Quarati

New materials

Elpasolite scintillators: CLYC, CLLC and CLLB

- The elpasolite crystals were discovered approximately 10 years ago.
- Excellent performances in terms of **gamma and neutron detection**.
- CLYC:Ce (Cs₂LiYCl₆:Ce), CLLC:Ce (Cs₂LiLaCl₆:Ce) and CLLB:Ce (Cs₂LiLaBr₆:Ce)

	CLYC	CLLC	CLLB		
Density	2.2	ЭГ	4.2		
[g/cm ²]	5.5	5.5	4.2		
Emission	290 CVL	290 CVL			
[nm]	390 Ce⁺	400 Ce^+	410 Ce^+		
Decay Time	1 CVL	1 CVL 60,			
[ns]	50,~1000	≤400	55 <i>,</i> ≤ 270		
Light yield	20000	25000	60000		
[ph/MeV]	20000	55000	80000		
Light yield	70000	110000	19000		
[n/MeV]	70000	110000	18000		
En. Res. at	Λ	2 /	20		
662 keV [%]	4	5.4	2.9		
PSD	Excellent	Excellent	Possible		
RMD Application Note					

Gamma and neutron identification

The different scintillation light decay response (CVL and Ce³⁺). The gamma-ray signal contains the CVL component, instead neutron signal does not contain CVL.

PSD (pulse shape discrimination) is based on the **differences in the scintillation decay response** to gamma and neutrons.

Neutron identification

CLYC scintillators can detect both thermal and fast neutrons.

Fast neutron detection

The kinetic energy of the neutron can be

Ine kinetic energy of the neutron can be measured:
Via the time signal using Time of Flight (FWHM < 1 ns)
Via the energy signal
CLYC:Ce is the only detector with this capability. %

Fast neutrons are detected using the reaction 35 Cl (n, p) 35 S and 35 Cl (n, α) 32 P. Neutron spectrometer: proton or alpha energy is linearly related to neutron energy.

1 CLYC:Ce sample enriched with ⁷Li to emphasize the fast neutron detection

⁷Li enriched CLYC:Ce has less sensitivity to thermal neutrons (less background between 3.0-3.5 MeV). ⁷Li enriched CLYC:Ce has an excellent sensitivity to fast neutrons.

Is the PMT dead?

APDs and silicon photomultipliers

THE UNIVERSITY of York

Silicon Photomultipliers

- Developments of large arrays of SiPMs
- Insensitive to magnetic fields

THE UNIVERSITY of York

- Bespoke electronics and readout developed
- Suffer from high dark current GREATLY IMPROVED
- Major gain instability with temperature GREATLY IMPROVED
- Excellent timing resolution (100s of ps)

2" LaBr3 + "chessboard" SiPM array

8 x 8 array of SensL C-Series SiPMs

Specialist glove box at York allows us to can hygroscopic crystals or couple SiPMs to bare crystals

Ways to rethink the scintillator paradigm?

Digital data acquisition

Ideal for future scintillator arrays at high energy facilities?

Finis