The decay pattern of the PDR in 128Te using the γ^3-setup

Johann Isaak
ExtreMe Matter Institute EMMI and Research Division, GSI

The 5th international conference on „Collective Motion in Nuclei under Extreme Conditions“

Krakow, September 14 - 18, 2015
What is the Pygmy Dipole Resonance?
How to investigate the Pygmy Dipole Resonance?

Nuclear Resonance Fluorescence (NRF)

\[\Gamma_0 \]

\[0^+ \]

\[2^+_1 \]

\[1^{\pm} \]
How to investigate the Pygmy Dipole Resonance?

Nuclear Resonance Fluorescence (NRF)

\[\Gamma_i \]
How to investigate the Pygmy Dipole Resonance?

Nuclear Resonance Fluorescence (NRF)

- selective to J=1 states
- model independent
 - spin
 - parity
 - transition strength
- low sensitivity for small Γ_i
γ-γ coincidence at HIγS $\rightarrow \gamma^3$- setup

Nuclear Resonance Fluorescence (NRF)
γ-γ coincidence at HIγS $\rightarrow \gamma^3$- setup

Nuclear Resonance Fluorescence (NRF)
$\gamma-\gamma$ coincidence at HγS $\rightarrow \gamma^3$- setup

Nuclear Resonance Fluorescence (NRF)

$\Gamma_0 \rightarrow 1^\pm \rightarrow 2_1^+ \rightarrow 0^+$
\(\gamma - \gamma \) coincidence at HI\(\gamma \)S $\rightarrow \gamma^3$- setup

Nuclear Resonance Fluorescence (NRF)
γ^3-setup

B. Löher et al., NIMA 723 (2013) 136
\(\gamma^3 \) - setup

B. Löher et al., NIMA 723 (2013) 136
γ³ - setup

B. Löher et al., NIMA 723 (2013) 136

- combination of:
 - high energy resolution HPGe
 - high efficiency LaBr
γ³ - setup

- combination of:
 - high energy resolution HPGe
 - high efficiency LaBr

- close setup geometry
- total photopeak efficiency
 - LaBr ~ 6 %
 - HPGe ~ 1.5 %

B. Löher et al., NIMA 723 (2013) 136
Single γ-ray spectroscopy on 128Te

- high energy resolution
- state-to-state analysis
Single γ-ray spectroscopy on ^{128}Te

- high energy resolution
- state-to-state analysis

- high photopeak efficiency
- average quantities
$\gamma\gamma$ coincidence on ^{128}Te

$^{128}\text{Te} \rightarrow E=6.9\text{ MeV}$
γ-γ coincidence on 128Te

128Te \rightarrow E=6.9 MeV
\(\gamma-\gamma \) coincidence on \(^{128}\text{Te}\)

\(^{128}\text{Te} \rightarrow E=6.9\ \text{MeV}\)

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]
\(\gamma-\gamma\) coincidence on \(^{128}\text{Te}\)
γ-γ coincidence on ^{128}Te

LaBr Sum
Projection on x-axis
$E_{\text{beam}} = 6.9$ MeV
\(\gamma-\gamma \) coincidence on \(^{128}\text{Te}\)
γ-γ coincidence on 128Te

743 keV

0^+_1

2^+_1

1^\pm

128Te

Counts / 30 keV

LaBr Sum (cut on 743 keV)
$E_{\text{beam}} = 6.9$ MeV

preliminary

Johann Isaak | COMEX5 | Krakow 2015

22
γ-γ coincidence on 128Te

LaBr Sum (cut on 743 keV)
$E_{\text{beam}} = 6.9$ MeV

preliminary
γ-γ coincidence on 128Te

$1^\pm \rightarrow 2_1^+$

LaBr Sum (cut on 743 keV)
LaBr deconvoluted
$E_{\text{beam}} = 6.9$ MeV

preliminary
γ-γ coincidence on 128Te
$\gamma-\gamma$ coincidence on ^{128}Te

Preliminary

No coincidence

Energy (MeV)

Preliminary

Coincidence

Energy (MeV)
$\gamma-\gamma$ coincidence on ^{128}Te

$$\langle b_1 \rangle = \frac{I_{1^\pm \rightarrow 2_1^+}}{I_{\text{elast}}}$$

![Graph showing ^{128}Te data with $\langle b_1 \rangle$ and energy distribution.](image)

Preliminary

Johann Isaak | COMEX5 | Krakow 2015
γ-γ coincidence on ^{140}Ce

V. Yu. Ponomarev, private communication
B. Löher, doctoral thesis (2014)

^{140}Ce

\[
\langle b_1 \rangle = \frac{I_{1^+} \rightarrow 2_{1^+}}{I_{\text{elast}}} \text{ extracted from LaBr Sum}
\]

\[
\langle b_1 \rangle (\%)
\]

Energy (MeV)

Johann Isaak | COMEX5 | Krakow 2015
$\gamma-\gamma$ coincidence on ^{140}Ce

V. Yu. Ponomarev, private communication
B. Löher, doctoral thesis (2014)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gamma-gamma_coincidence.png}
\end{figure}

\[
\langle b_1 \rangle = \frac{I_1^+ \rightarrow 2^+_1}{I_{\text{clast}}}
\]

extracted from LaBr Sum

Energy (MeV)
$\gamma-\gamma$ coincidence on ^{140}Ce

V. Yu. Ponomarev, private communication
B. Löher, doctoral thesis (2014)
γ-γ coincidence on ^{140}Ce

V. Yu. Ponomarev, private communication
B. Löher, doctoral thesis (2014)

^{140}Ce

\[\langle b_1 \rangle = \frac{I_{r}^{+} - I_{\text{clast}}}{I_{\text{clast}}} \]

extracted from LaBr Sum

\[\langle b_2 \rangle \]

extracted from LaBr Sum

coupling between PDR and low-lying states well described
Thank you for your attention!

B. Löher, D. Savran and J. Silva
ExtreMe Matter Institute EMMI and Research Division, GSI

T. Aumann, T. Beck, J. Beller, U. Gayer, N. Pietralla, C. Romig,
H. Scheit, V. Werner and M. Zweidinger
Institut für Kernphysik, TU Darmstadt

M. Scheck
School of Engineering, UWS, Paisley, UK & SUPA, Glasgow, UK

V. Derya and A. Zilges
Institut für Kernphysik, Universität zu Köln

N. Cooper
Yale University, New Haven, USA

W. Tornow and H.R. Weller
Department of Physics, Duke University, Durham, USA

This work was supported by the Alliance Program of the Helmholtz Association (HA216/EMMI) and by the Deutsche Forschungsgemeinschaft (SFB 634 and ZI 510/4-2)
Commissioning with ^{32}S

Singles

Coincidence

2230 keV Singles: 0.197(3)

5894 keV Singles: 1.03(2)

peak to background

Counts / 5 keV x 20

Energy [MeV]
Commissioning with 32S

\begin{align*}
\text{counts / 5 keV} & \quad \text{Energy [MeV]} \\
0 & \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \\
0 & \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100
\end{align*}

- 2230 keV: Singles: 0.197(3), Energy Cut: 9.6(15)
- 5894 keV: Singles: 1.03(2), Energy Cut: 11.7(13)

Peak to Background Ratio

- 2230 keV: $\frac{1}{300}$
- 5894 keV: $\frac{1}{20}$
Experimental campaigns using the γ^3-setup

beam time 2012:

$^{40}\text{Ca}, ^{76}\text{Ge}, ^{124}\text{Sn}, ^{140}\text{Ce}, ^{156}\text{Gd}$

- Pygmy Dipole Resonance
- Scissors mode
- Mixed-symmetry state
- Two-phonon state

beam time 2013:

$^{92,94}\text{Zr}, ^{128}\text{Te}, ^{152,156}\text{Gd}, ^{162,164}\text{Dy}, ^{206}\text{Pb}$

beam time 2014/2015:

$^{150}\text{Sm}, ^{54}\text{Fe}, ^{50}\text{Ti}, ^{52}\text{Cr}$
Single γ-ray spectroscopy on 128Te

$R = \frac{I_{M1}}{I_{E1}}$ extracted from LaBr
Single γ-ray spectroscopy on ^{128}Te

\[\text{asymmetry} = \frac{N_\parallel - N_\perp}{N_\parallel + N_\perp} \]

extracted from LaBr

\[^{128}\text{Te} \quad ^{32}\text{S} \]
Single γ-ray spectroscopy on 128Te

... with linearly polarized photons

- distinguish between E1 & M1 transition

N. Pietralla et al., PRL (2001) 012502