

# Scissors resonances in the quasi-continuum of heavy nuclei

Magne Guttormsen Department of Physics University of Oslo, Norway



# The Oslo method

# Th and U experiment at OCL

 12 MeV
 d
 on <sup>232</sup>Th

 24 MeV <sup>3</sup>He
 on <sup>232</sup>Th

 15 MeV
 d
 on <sup>238</sup>U





M.Guttormsen, A.Bürger, T.E.Hansen, N.Lietaer, NIM A648(2011)168

#### Simultaneous extraction of NLD and $\gamma SF$





Oslo method:

M. Guttormsen et al., NIM A374 (1996) 371
M. Guttormsen et al., NIM A255 (1987) 518
A. Schiller et al., NIM A447 (2000) 498
A.C. Larsen et al., Phys. Rev. C 83, 034315 (2011)

# Assumption for the extraction of primary γ-spectra



#### From total to primary $\gamma$ -ray matrix



# **Primary** γ-ray matrix



 $P(E,E_{\gamma}) = \rho(E_{f}) \cdot T(E_{\gamma})?$ 



### Constant-temperature level densities



# **Constant-temperature level densities**



\_evel density (MeV<sup>-1</sup>)

# **γ-ray strength functions**

#### Dear child, many names:

- γ-ray strength function (γSF)
- radiative strength function (RSF)
- photon strength function (PSF)

$$f(E_{\gamma}) = \frac{1}{2\pi} \frac{T(E_{\gamma})}{E_{\gamma}^{3}}$$



Utsunomiya et al., PRC 80, 055806 (2009) Agvaanluvsan et al., PRL 102, 162504 (2009)

### **Generalized Brink-Axel hypothesis**







### The scissors resonance



K. Heyde et al., Rev. Mod. Phys. 82, 2365 (2010)

#### Scissors resonances, rare earth region



#### Low-energy y-enhancement in rare-earth nuclei

A. Simon et al., STARLITER Clover detectors,

25 MeV (p, d) reaction, Cyclotron Institute of Texas A&M University



#### Scissors resonance, actinides







Data: M. Guttormsen et al., PRC **89**, 014302 (2014) T.G. Tornyi et al., PRC **89**, 044323 (2014)

Theory on two-bumps: Orbital and spin scissors E. B. Balbutsev, I.V. Molodtsova, and P. Schuck, Phys. Rev. C **91**, 064312 (2015)

#### Scissors resonance systematics

#### Inversely and linearly energy-weighted sum rules

J. Enders, P. von Neumann-Cosel, C. Rangacharyulu, and A. Richter, Phys. Rev. C **71**, 014306 (2005).

$$\omega_{\text{SR}} = \sqrt{S_{+1}/S_{-1}}$$

$$= \delta \omega_D \sqrt{2\xi},$$

$$B_{\text{SR}} = \sqrt{S_{+1}S_{-1}}$$

$$= \frac{3}{4\pi} \left(\frac{Z}{A}\right)^2 \Theta_{\text{rigid}} \delta \omega_D \sqrt{2\xi}$$

$$= \frac{3}{4\pi} \left(\frac{Z}{A}\right)^2 \Theta_{\text{rigid}} \omega_{\text{SR}}.$$

$$\Theta_{\text{rigid}} = \frac{2}{5} m_N r_0^2 A^{5/3} (1+0.31\delta)$$

$$\xi = \frac{\omega_Q^2}{\omega_Q^2 + 2\omega_D^2}$$

depends on the IVGDR and ISGQR frequencies of

$$\omega_D \approx (31.2A^{-1/3} + 20.6A^{-1/6})(1 - 0.61\delta)$$
MeV,  
 $\omega_Q \approx 64.7A^{-1/3}(1 - 0.3\delta)$ MeV.



## Scissors resonance in superheavy nuclei?

Now running JYFL – JR137: "Search for the M1 Scissors Mode in <sup>254</sup>No"

Fusion-evaporation reaction  $^{208}Pb(^{48}Ca,2n)^{254}No \implies Tag recoils (^{254}No)$ 



<image>

JUROGAM2-RITU-GREAT spectrometers @ JYFL



# **Applications**

# Astrophysics, nuclear energy and radioactive waste





# (n, y) cross sections



# Summary

| NLD          | Constant-temperature level densities                                                                                                                                             |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scissors     | • Rare earth $B(M1) \approx 5 - 7 \mu_N^2$ at $E_\gamma \approx 3$ MeV<br>• Actinides $B(M1) \approx 8 - 11 \mu_N^2$ at $E_\gamma \approx 2$ MeV<br>• Splits into two components |
| Applications | • $\gamma$ SF + NLD predict accurate ( <i>n</i> , $\gamma$ ) cross sections                                                                                                      |
| Outlook      | <ul> <li>Funding for 30 3.5x8" LaBr<sub>3</sub> CACTUS -&gt; OSCAR</li> <li>Far from stability, new β-Oslo methods at MSU</li> <li>Spyrou</li> </ul>                             |
|              | on<br>Fridav!                                                                                                                                                                    |

## The scissors digging team!

M. Aiche, F.L. Bello Garrote, L.A. Bernstein, D. Bleuel, Y. Byun, Q. Ducasse, T.K. Eriksen, F. Giacoppo, A. Görgen, F. Gunsing, T.W. Hagen, B. Jurado, S.N. Liddick, M. Klintefjord, A.C. Larsen, L. Lebois, F. Naqvi, H.T. Nyhus, G. Perdikakis, T. Renstrøm, S.J. Rose, E. Sahin, A. Simon, A. Spyrou, S. Siem, T.G. Tornyi, G.M. Tveten, A. Voinov, M. Wiedeking and J.N. Wilson

University of Oslo, CENBG Gradignan, LLNL, Ohio University, IPN Orsay, CEA Saclay, iThemba LABS, NSCL/MSU, University of Notre Dame

