

Stable and radioactive beam studies @ ALTO

Georgi Georgiev, CSNSM, Orsay, France

The ALTO facility

Experimental areas

²⁶Al nucleosynthesis in massive stars

N. de Séréville & A. M. Laird N-SI-36

LICORNE II – fast-neutron source

Hydrogen gas cells

H₂ pressure and flow control system

Development of a kinematically focused neutron source with the p(⁷Li,n)⁷Be inverse reaction *M.Lebois, J.N. Wilson et al., Nucl. Instrum. Meth. A 735 145 (2014)*

TDRIV on H-like ions: ²⁴Mg

High-accuracy g-factor measurements are essential for constraining the theories! COMEX5 18 Sept. 2015, Kraków, Poland

MINORCA in Orsay (June 2014 – March 2015)

12 ORGAM CS HPGe x 0.1% 8 Miniball TC at ~14 cm from target 7.3% efficiency @ 1.33 MeV ancillary detectors:

- Orsay plunger (OUPS)
- particle detector
- DSSD

MINORCA – experiments performed

1. Time dependent recoil in vacuum for Na-like ⁵⁶Fe ions

- spokespersons: A. Stuchbery, D. Balabanski

2. Shape coexistence in ⁷⁴Se studied through complete low-spin spectroscopy after Coulomb excitation

- spokespersons: M. Zielinska, K. Wrzosek-Lipska

- 3. Measurement of octupole collectivity in Nd, Sm and Gd nuclei using Coulomb excitation spokespersons: P.A. Butler, M. Zielinska
- 4. Spectroscopy of the neutron-rich fission fragments produced in the ²³⁸U(n,f) reaction spokespersons: J. Wilson, M. Lebois
- 5. Evaluation of the Angular Momentum Dependence of the ⁹⁶Mo γ Strength Function - spokesperson: B. Goldblum
- 6. Lifetime Measurement of ¹⁰⁰Ru: A possible candidate for the E(5) critical point symmetry spokesperson: Th. Konstantinopoulos
- 7. Lifetime measurements in ¹¹³Te: Determining Optimal effective charges approaching the N=Z=50 doubly-magic shell closure.

- spokesperson: D.M. Cullen

Most-recent results

- First in-beam experiments of Demonstrator
 - 2,048 Micromegas pads
 - 4 DSSDs + 12 Pad Si integrated
 - Newly-made GET electronics to take data

DSSD

- 2 successful runs (June to July '15)
 - ¹²C @80 MeV + He gas
 - ⁶Li @11 to 23 MeV + He gas
- 35 visitors (16 domestic, 19 international)

Pad Si

Micromegas

ACTAR TPC: Demonstrator

- Two experiments performed at ALTO:
- ba α -clustering in light nuclei actar 300 Ν (sample) Beam 204 (pad) 150 60 $\overset{_{40}}{X}$ (pad) 2Ó 30 30 300 visu_zy visu_yx visu_zx 300

ALTO - RIB

First operational RIB facility based on photo-fission

Illiante Sept. 2015, Kraków, Poland

Fission cross section

Rialto: Resonant laser ionisation at Alto

S. Franchoo et al.

Mezzanine of the mass separator/RIB zone

Nd:Yag pump laser (532 nm, 90 W)

2 dye lasers (540-850 nm, 8W @ 30W pump, 10 ns pulse width, 3 GHz line width)

BBO doubling units (270-425 nm, >100 mW)

Nuclear structure in β-decay

BEDO setup

neutron detection TETRA fast timing LaBr3

up to 5 Ge detectors (ϵ = 5-6%) 4 π β trigger

80 ³He tubes ϵ (²⁵²Cf) = 53% borated polyethylene shielding

Fast-timing studies using LaBr₃ detectors

Results from BEDO in β -delayed γ -spectroscopy mode

 $^{82}\text{Ge} \rightarrow ^{82}_{33}\text{As}_{49}$

(1) problem of the spectral distribution of 1⁺ states in the N=50 region

(\rightarrow responsible for the half-life of the mother nucleus, possible consequences on the r-process) interpreted by the theoretical work of Severyukhin... <u>Giai</u> et al. (influence of couplings to 2p-2h and tensor interaction)

(2) ubiquitous presence of intruder states of the type 1p-2h \rightarrow signature of shape coexistence

Though this phenomenon seems to concern all shell-closure regions: not a single study at N=50 for more than 3 decades! (Z=50 a textbook case)

conclusion: an «island of inversion» is « missed » at N=50 by 0.5 MeV only !

A. Etilé et al., Phys. Rev. C 91, 064317 (2015)

Present setups and near-future projects

Laser-Induced nuclear orientation (μ ,Q, J^{π})

- Stable and Radioactive beam facility
- R&D on ISOL & RIB
- Iow-energy physics program based on photo-fission
- R&D and physics at ALTO a step towards a next-generation ISOL RIB facility:

initiate physics program, train ISOL physicists, develop instruments and methodologies

