Stable and radioactive beam studies @ ALTO

Georgi Georgiev,
CSNSM, Orsay, France
The ALTO facility

<table>
<thead>
<tr>
<th>Year</th>
<th>Users</th>
<th>Beam-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>200</td>
<td>2983 h 373 UT</td>
</tr>
<tr>
<td>2014</td>
<td>135</td>
<td>2297 h 287 UT</td>
</tr>
<tr>
<td>2015</td>
<td>143</td>
<td>2736 h 342 UT</td>
</tr>
</tbody>
</table>
Experimental areas

- Bacchus
- Split-Pole spectrometer
- ISOL production cave
- ISOL mass separator experimental lines
- Licorne
- e LINAC
- Stable beam with spectrometer
- Stable beam w/o spectrometer
- Radioactive beam lines
-

\gamma\text{-spectrometers }\text{ORGAM MINORCA PARIS}

cluster, molecular & droplets beams
Astrophysical motivation:

- Gamma-ray emission associated with 26Al observed in our galaxy.
- 26Mg coming from 26Al decay observed in presolar grains
- 26Al yields depend strongly on reactions 26Al(n,p)26Mg and 26Al(n,α)23Na
- Need for better 27Al spectroscopy (E_R, $J\pi$, Γ_p, Γ_α) above neutron threshold ($S_n = 13$ MeV)

26Al(n,p)26Mg and 26Al(n,α)23Na in massive star

→ Populating resonances with the 27Al(p,p')27Al* reaction

Split-Pole spectrometer (ALTO) + DSSSDs in reaction chamber

30 new states above neutron threshold in 27Al
S. Benamara, N. de Séréville et al, PRC 89, 065805 (2014)
Hydrogen gas cells

Development of a kinematically focused neutron source with the p(\(^7\)Li,n)\(^7\)Be inverse reaction

LICORNE II – fast-neutron source

H\(_2\) pressure and flow control system

18 Sept. 2015, Kraków, Poland
Previous measurement:
\[|g(2^+)| = 0.51 (2) \]
R.F. Horstman et al., NPA 248, 291 (1975)

Our result:
\[|g(2^+)|= 0.538 (13) \]
A. Kusoglu et al. PRL 114, 062501 (2015)

High-accuracy g-factor measurements are essential for constraining the theories!
MINORCA in Orsay (June 2014 – March 2015)

12 ORGAM CS HPGe x 0.1%
8 Miniball TC at ~14 cm from target
7.3% efficiency @ 1.33 MeV

ancillary detectors:
- Orsay plunger (OUPS)
- particle detector
- DSSD
MINORCA – experiments performed

1. **Time dependent recoil in vacuum** for Na-like 56Fe ions
 - spokespersons: A. Stuchbery, D. Balabanski

2. **Shape coexistence in 74Se** studied through complete low-spin spectroscopy after Coulomb excitation
 - spokespersons: M. Zielinska, K. Wrzosek-Lipska

3. **Measurement of octupole collectivity in Nd, Sm and Gd nuclei** using Coulomb excitation
 - spokespersons: P.A. Butler, M. Zielinska

4. **Spectroscopy of the neutron-rich fission fragments** produced in the 238U(n,f) reaction
 - spokespersons: J. Wilson, M. Lebois

5. **Evaluation of the Angular Momentum Dependence of the 96Mo γ Strength Function**
 - spokesperson: B. Goldblum

6. **Lifetime Measurement of 100Ru**: A possible candidate for the E(5) critical point symmetry
 - spokesperson: Th. Konstantinopoulos

7. **Lifetime measurements in 113Te**: Determining Optimal effective charges approaching the N=Z=50 doubly-magic shell closure.
 - spokesperson: D.M. Cullen
Most-recent results

- First in-beam experiments of Demonstrator
 - 2,048 Micromegas pads
 - 4 DSSDs + 12 Pad Si integrated
 - Newly-made GET electronics to take data
- 2 successful runs (June to July ’15)
 - 12C @80 MeV + He gas
 - 6Li @11 to 23 MeV + He gas
- 35 visitors (16 domestic, 19 international)
ACTAR TPC: Demonstrator

- Two experiments performed at ALTO:
 - α-clustering in light nuclei
First operational RIB facility based on photo-fission → populating the GDR of 238U

standard ISOLDE target

$\phi = 14 \text{ mm; } L = 140 \text{ mm}$

$\rho = 3.2 \text{ g/cm}^3; \ T \leq 2100^\circ \text{C}$

\Rightarrow Estimated yields for 10 μA, 50 MeV e$^-$ beam
Rialto: Resonant laser ionisation at Alto

S. Franchoo et al.

Nd:Yag pump laser (532 nm, 90 W)

2 dye lasers (540-850 nm, 8W @ 30W pump, 10 ns pulse width, 3 GHz line width)

BBO doubling units (270-425 nm, >100 mW)
Nuclear structure in β-decay

- **BEDO setup**
- **neutron detection**
 - TETRA
- **fast timing**
 - LaBr$_3$

- up to 5 Ge detectors ($\varepsilon = 5\text{-}6\%$
- 4π β trigger

- 80 3He tubes $\varepsilon(^{252}\text{Cf}) = 53\%$
- borated polyethylene shielding

- Fast-timing studies using LaBr$_3$ detectors
18 Sept. 2015, Kraków, Poland

Results from BEDO in β-delayed γ-spectroscopy mode

$^{82}\text{Ge} \rightarrow ^{82}_{33}\text{As}_{49}$

(1) problem of the spectral distribution of 1^+ states in the $N=50$ region
(→ responsible for the half-life of the mother nucleus, possible consequences on the r-process)
interpreted by the theoretical work of Severyukhin... Giai et al. (influence of couplings to 2p-2h and tensor interaction)

(2) ubiquitous presence of intruder states of the type $1p$-2h
→ signature of shape coexistence

shape coexistences: a general phenomenon?

$^{82}\text{Ge} \rightarrow ^{82}_{33}\text{As}_{49}$

Though this phenomenon seems to concern all shell-closure regions: not a single study at $N=50$ for more than 3 decades!
(Z=50 a textbook case)

conclusion: an «island of inversion» is «missed» at $N=50$ by 0.5 MeV only!

Present setups and near-future projects

Laser-Induced nuclear orientation (μ,Q, J^π)

- LTNO (³He/⁴He)
- POLAREX (project)
- MLL Trap (project)
- Mass measurements
- LINO (project)
- Identification station
- TETRA (existing)
- TAS (project)
- BEDO/TETRA (existing)
- Stable and Radioactive beam facility
- R&D on ISOL & RIB
- low-energy physics program based on photo-fission
- R&D and physics at ALTO a step towards a next-generation ISOL RIB facility:

 initiate physics program, train ISOL physicists, develop instruments and methodologies