

Marek Jeżabek – Director General of the Institute of Nuclear Physics Polish Academy of Sciences UB J PAN, Kraków Zbigniew Kąkoł – Vice-Rector of the University of Science and Technology (ACH), Kraków Marta Kichiska-Habior – Vice-Rector of the University of Warsaw (UM), Warszawa Stanisław Kirzm – Vice-Rector of the Jagiellonian University (UM), Raków

comex5.ifj.edu.pl

COMEX 5 OUTLOOK

KNOW

PAN

KRA

krikow.ol

and coorganized by UJ Kraków, AGH Kraków, UW Warszawa and Foundation for AGH IEI PAN Kraków

The main topics of COMEX5 conference are:

- •Giant resonances in cold and hot nuclei,
- Collective and new excitation modes in nuclei,
- •Spin and isospin modes,

•Multi-phonon excitations, clustering and pairing effects in excitations,

- •Studies of the decay of highly excited states,
- •Applications in astrophysics,
- Physics of Collective Modes under Extreme Conditions

Huge added value of <u>High resolution</u> and <u>Polarized beams</u> A.Tamii et al (RCNP Osaka) PRL (2011)107,062502

E1 Response of ²⁰⁸Pb and α_D

Hot Topic :Pygmy resonances Anwers and many more questions We need different probes ! Isoscalar or isovector?

Comparison : ¹⁷O, alpha and Gamma scattering

The splitting of the PDR region becomes even more evident with integratation of the strength into two regions, 5–7 and 7–9 MeV

IS nature of the PDR due to outermost nucleons , neutron skin. The r_{np} is correlated with J and L. Interesting to study the properties of the neutron skin

More experimental information's on Transitions densities Decay pattern , branching ratio with NRF Transition region from bound to unbound ELI-NP !!

Future

CAGRA+GR Campaign Exp. in 2016

- Study on PDRs by $(p, p'\gamma)$ and $(\alpha, \alpha'\gamma)^{*1}$ isospin/surface property, transition density ang. dep.
- (⁶Li, ⁶Li' γ) for IV spin-flip inelastic ex.^{*2}

CAGRA(Clover Ge Array) for γ-coincidence measurements

also plans for LaBr₃ detectors

LAS at 61 deg

*1 A. Bracco, F. Crespi, V. Derya, M.N. Harakeh, T. Hashimoto, C. Iwamoto, P. von Neumann-Cosel, N. Pietralla, D. Savran, A. Tamii, and A. Zilges *et al.**2 S. Noji, R.G.T. Zegers *et al.*,

Low momentum collective modes: hadronic scattering Experiments in storage rings and with active targets -

Experimental storage ring at GSI Luminosity: $10^{26} - 10^{27}$ cm⁻²s⁻¹

INVERSE Kinematics Stable and unstable beams

ESR ring and EXL

Innovative experimental methods and tools

Monopole mode in ⁵⁸Ni and ⁵⁶Ni: ring vs. active target

Isovector charge-exchange modes

Gamow-Teller Giant Resonance

Theory from evolution to revolution

The position of GR described form first principles for the first time

V. Nazarewicz, S. Bacca

Nuclear Theory from evolution to revolution

Fully microscopic calculations beyond mean field studies are now available –No free parameters!!

Skyrme RPA+PVC

Y. Niu *et al.*, PRL 114, 142501 (2015).
Y. Niu *et al.*, PRC 90, 054328 (2014).
Skyrme TBA
N. Lyutorovich et al., PLB 749, 292 (2015)

Covariant TBA

E. Litvinova et al.

Fig. 1. Total dipole photoabsorption cross section in stable medium-mass nuclei

The origin of elements

Possible sites for the r-process

Nuclear reactions and astrophysics

Source	Percentage Error
Diffusion coefficient of SSM	2.7%
Nuclear rates [mainly ⁷ Be(p,γ) ⁸ B and ¹⁴ N(p,γ) ¹⁵ O]	9.9%
Neutrinos and weak interaction (mainly θ_{12})	3.2%
Other SSM input parameters	0.6%

Constraining (n, y) reaction cross sections for astrophysical applications

A. Spyrou, MSU

- New technique for constraining (n,γ) reaction rates on unstable nuclei.
- Current neutron-capture rate uncertainty in many cases is more than a factor of 100.
- Technique uses β decay to populate the same nucleus as an (n,γ) reaction and determine its level density and γ-strength function. (n,γ) cross section is calculated using these measured quantities.
- Uncertainty of extracted (n,γ) reaction rates is ~ factor of 2-3. Makes measurements on relevant short-lived nuclei possible.

Nuclear Resonance Fluorescence (NRF) C.A.Ur (ELI-NP) A.Zilges (Univ of Cologne)

Special properties of ELI-NP photon beam for NRF:

- very high intensity
- (10⁴ photons/(s·eV))
- narrow bandwidth
- (down to 0.5%)
- high degree of
- polarization (> 99%)
- small beam diameter
- (mm range)
- low duty factor (100 Hz)

Availability frontier (access to rare isotopes)

Sensitivity frontier (weak channels)

Precision frontier (high statistics)

Electromagnetic Dipole Response in Nuclei

S

(7,7)

 (γ, \mathbf{n})

(y,abs)

y.2n)

(y,Xn)

Nuclear Structure and Astrophysics @ ELI-NP

Physics case:

- Nuclear structure clustering in light nuclei: ¹²C, ¹⁶O;
- Nuclear astrophysics: ${}^{16}O(\gamma, \alpha){}^{12}C$, ${}^{22}Ne(\gamma, \alpha){}^{18}O$, ${}^{19}F(\gamma, p){}^{18}O$, ${}^{24}Mg(\gamma, \alpha){}^{20}Ne$, the *p*-process (with the high energy γ beam in E8 experimental hall);
- International collaboration: Italy (INFN-LNS), Poland (Univ. Warsaw),USA (U. Chicago, U. Yale, U.Conn), Romania

Amazing Development of innovative instruments!!

The ISOLDE facility

KVI

entsUsers INTCLISCC Science&EventsPro

+HE –ISOLDE is starting

GSI

TNA EU Facilities

attal 4

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

-ORGENDAGWRITAGE

INFN LNS & LNL

and SPES RIB

ALTO

Jyvaskyla

Facilities

GANIL

GANIL-SP1

+ ESFRI Facilities

Sec. National Laboratory of Cyclotrons ٩ in Poland

Heavy Ion Laboratory **University of Warsaw**

Cyclotron Center Bronowice at the Institute of Nuclear **Physics**

Isochronous cyclotron K=160

Cyclotron PROTEUS C-235

The frontiers of nuclear science today require new tools, technologies, and accelerators. The quest is to understand the origin, evolution, and structure of the visible matter in the universe. Photons ,Stable and Radioactive Ion Beams are central to this quest worldwide.

(associated to impressive innovation in instrumentation)

Backed by a strong development in nuclear theory

The 5th international conference on "COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS"

Crakow September 13-18,2015

Thanks to all contributors to this outlook talk

A.Bracco, B. Balantekin, K. Boretsky, R. Casten, G.Colo, J.Dobaczweski, B.Fornal, D.Freekers, M.Itkis, M.N. Harakeh, V. Nazarewicz, E.Khan, N.Kalantar, A. Krasznahorkay, Ch.Mazzocchi, M. Sasano, D. Savran, N. Shimizu, A, Spyrou, A.Tamii, M.Tataki, C.A. Ur, M.Vandebrouck, R.Zegers, A.Zilges+

Dziękujemy za cierpliwość

See you in 2018 at COMEX6 -Capetown

Sydney Gales ,Comex5, Sept 14-18 ,Krakow

END

Sydney Gales ,Comex5, Sept 13-18 ,Krakow