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Neptune driving Waves

Powerful Waves = strong interaction)

Neptune =
weak interaction



Vibration Modes in Nuclei (Schematic)

Gamow-
Teller mode

()
Isovector

&
Spin

excitation



Gamow-Teller transitionｓ
Mediated by  operator

S = -1, 0, +1  and T = -1, 0, +1
(L = 0, no change in radial w.f. )
 no change in spatial w.f.

Accordingly, transitions among  j> and j< configurations
j> j>,      j< j<,        j> j<

example f7/2 f7/2,  f5/2 f5/2,   f7/2 f5/2

Note that Spin and Isospin are 
unique quantum numbers in atomic nuclei !

 GT transitions are sensitive to Nuclear Structure !
 GT transitions in each nucleus are UNIQUE !



IS & IV pairing and “Residual Interactions”

We notice the importance of the  spin-spin coupling.
(pairing interaction)

However, J values of even-even nuclei are J=0+. 

In general, interactions that are not included in a model
are called “residual interactions”

1s1/2

proton neutron

=4He = 
J=0+

ex. “deuteron model”

J=0+

J=1+

ex.

unbound

bound=deuteron

Isovector T=1

Isoscalar T=0



**Basic common understanding of 
-decay 

and Charge-Exchange reaction

 decays : 
Absolute B(GT) values, 

but usually the study is limited to low-lying states
(p,n), (3He,t) reaction at 0o :

Relative B(GT) values, but Highly Excited States

** Both are important for the study of GT transitions!



-decay & Nuclear Reaction
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-decay GT tra. rate =


B(GT) : reduced GT transition strength

(matrix element)2 = |<f||i>|2

*Nuclear (CE) reaction rate (cross-section)
= reaction mechanism

x operator
x structure =(matrix element)2

*At intermediate energies (100 < Ein < 500 MeV) 
d/d(q=0) : proportional to B(GT)
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Simulation of -decay spectrum
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(p, n) spectra for Fe and Ni Isotopes

Fermi

GTR

Fermi

Fermi

Rapaport & Sugerbaker

GTR

GTR GTR

GTR
GTR

T=1



58Ni(p, n)58Cu
Ep = 160 MeV

58Ni(3He, t)58Cu
E = 140 MeV/u
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Comparison of (p, n) and (3He,t) ０o spectra

Y. Fujita et al.,
EPJ A 13 (’02) 411.

H. Fujita et al.,
PRC 75 (’07) 034310

J. Rapaport et al.
NPA (‘83)
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Grand Raiden Spectrometer

Large Angl
Spectromet

3He beam
140 MeV/u

(3He, t) reaction



RCNP, Osaka Univ.

Dispersion Matching Techniques 
were applied!

E=150 keV

E=30 keV



T=1 Isospin Symmetry

42
20Ca22

Tz= +1 Tz= -1

42
22Ti20

Tz= 0

42
21Sc21

GT GT



T=1 symmetry : Structures & Transitions



-decay & Nuclear Reaction
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-decay GT tra. rate =


B(GT) : reduced GT transition strength

(matrix element)2

*Nuclear (CE) reaction rate (cross-section)
= reaction mechanism

x operator
x structure =(matrix element)2

A simple reaction mechanism should be achieved ! 
we have to go to high incoming energy

Study of Weak Response of Nuclei
by means of 

Strong Interaction !
using -decay as a reference



**GT transitions in each nucleus are 
UNIQUE !  

- pf-shell nuclei -



rp -process path

50Cr

58Ni
N=Z line

Z

N

46Ti

54Fe

42Ca



42Ca(3He,t)42Sc in 2 scales

80% of the total B(GT) strength 
is concentrated in the excitation 
of the 0.611 MeV state.

B(GT) = 2.2
(from mirror  decay)

B
(F

)=
2



GT strengths in A=42-58

GT-GR



GT states
in

A=42-54
Tz=0 nuclei

T. Adachi et al.
PRC 2006

Y. Fujita et al.
PRL 2005

T. Adachi et al.
PRC 2012

Peak heights are
proportional to 
B(GT) values

B
(F

)=
N

-Z

Y. Fujita et al.
PRL 2014
PRC 2015



GT-strength: Cumulative Sum

M. Homma et al.

GXPF1



SM Configurations of GT transitions

20

28

 

Target nuclei: N = Z + 2 (Tz = +1)
Final nuclei : N = Z (Tz = 0)



rp -process Path
(T=1 system)

46Ti

54Ni

N=Z lin
e

Z

N

54Fe

58Ni

50Co

42Ca

58Zn

50Fe

46Cr

42Ti

f -shell nuclei !
 transition among f7/2 & f5/2 shells !
** E (f5/2 – f7/2) ~ 5 - 6 MeV



Role of Residual Int. (repulsive)

1p-1h strength

collective 
strength
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Graphical solution of the
RPA dispersive eigen-equation

Single particle-hole
strength distribution

Collective excitation 
formed by the repulsive

residual interaction

p-h configuration + IV excitation
= repulsive

positive = repulsive



Role of Residual Int. (repulsive)
1p-1h strength

collective 
strength
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42Ca(3He,t)42Sc in 2 scales

B(GT) = 2.2
(from mirror  decay)



QRPA 
calculations

Calculation by 
P. Sarrigren, 
CSIC, Madrid

using Skyrme int.
(with IV pairing corr.)

0 4 8 12
Ex (MeV)



SM Configurations of GT transitions

+ IV-type int. 
= REPULSIVE

particle-hole configuration

20

28

 



SM Configurations of GT transitions

20

28

 

-p - -p configurations
sensitive to IS pairing int.

attractive 
(spin-triplet, IS int. is stronger 

than spin-singlet, IV int.)

particle-hole configurations
+ IV-type excitation ()

repulsive

by Engel, Bertsch, Macchiavelli



SM Configurations of GT transitions

20

28

 

particle-particle int. (attractive)
(IS p-n int. is attractive)

particle-hole int. (repulsive)

Overwhelming the repulsive 
nature of  int. !

Isoscalar interaction 
can play Important roles !



GT strength Calculations:  
HFB+QRPA + pairing int.

Bai, Sagawa, Colo et al., PL B 719 (2013) 116

Results (using Skyrme int. SGII) 
at f =0: there is little strength in the lower energy part,
at f =1.0~1.7: coherent low-energy strength develops!

IS

IV



QRPA-cal. GT-strength (with IS-int.)

42Ca

42Ca42Sc (Q-value)

by Bai Sagawa Colo



Role of Residual Int. (attractive)

collective 
strength

(GR)
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Ex

Ex

Ex

negative=attractive

Graphical solution of the
RPA dispersive eigen-equation

Single particle-hole
strength distribution

Collective excitation formed
by the attractive IS
residual interaction



Role of Residual Int. (attractive)

collective 
strength

(GR)
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Collective excitation formed
by the attractive IS
residual interaction

42Ca(3He,t)42Sc



QRPA cal. including IS int.

Configurations
are in phase!

C.L. Bai, H. Sagawa, G. Colo



42Ca42Sc: 
Shell Model Cal.: Transition Matrix Elements

Matrix Elements are in-phase !

1+
1

SM cal: M. Honma



42Ca(3He,t)42Sc in 2 scales

Low-energy collective GT excitation !
(collectivity is from IS p-n int. !)

B(GT)
= 2.2

G
T

IA
S

Y. Fujita, et al., PRL 112, 112502 (2014).
PRC  91, 064316 (2015).

Low Energy Super GT state



0 5 10 log ft

Fermi

GT

6He, 0+  6Li, 1+ log ft = 2.9
18Ne, 0+  18F, 1+ log ft = 3.1
42Ti, 0+  42Sc, 1+ log ft = 3.2

Super-allowed
GT transitions

Super-allowed GT transitions in  decay

(smaller log ft larger B(GT))



Super-Multiplet State
*proposed by Wigner (1937)

In the limit of null L・S force, SU(4) symmetry exists.
We expect:

a) GT excitation strength is concentrated 
in a low-energy GT state. 

b) excitation energies of 
both the IAS and the GT state are identical.
 Super-Multiplet State

In 54Co, we see a broken SU(4) symmetry.
In 42Sc,  we see  a good  SU(4) symmetry. 
 attractive IS residual int. restores the symmetry !
 0.611 MeV state in 42Sc has a character close to 

Super-Multiplet State !
We call this state the 

Low-energy Super GT state !



SM Configurations of GT transitions

particle-particle int. (attractive)
(T=0, IS p-n int. is attractive)

particle-hole int. (repulsive)

Overwhelming the repulsive 
nature of  int. !

 N=Z LS-closed Core
+ 2 nucleon system !

Isoscalar interaction 
can play Important roles !



GT transitions forming 
Low-Energy Super GT state

42Ca 42Sc

2n 2H (d)

B(GT) = 2.17     Smaller !

18O 18F B(GT) = 3.09

6Li6He B(GT) = 4.73

B(GT) = 6.0 ?     Large !
 (Sum rule) = 3 x |N-Z| = 6

J = O+  1+

g.s.

g.s.

g.s.

1st Ex state (IAS is the g.s.)



18O(3He,t)18F at 0o

Low-energy collective GT excitation:  B(GT)=3.1

Low Energy Super GT state



6He -decay & 6Li(p,n)6Be

6Be
2p + 
=92 keV

0
0 10 20   MeV

Ex

-decay
log ft = 2.9
[B(GT) = 4.7]

Low Energy Super GT state



90Zr : Fermi & GT transitions

Fermi transition Gamow-Teller transitions

Schematic Picture of Single-Particle Transitions

GT Giant Resonance

GT low-lying state

40

50

fp -shell p-h nature of 
configurations



Discrete 
States 

and 
GTR in 90Nb



Formation of GT-GR in 90Nb

g9/2g9/2g9/2g7/2

*in  90Zr90Nb transitions
 int. : repulsive nature
*both configurations : p-h nature (repulsive)



42Ca(3He,t)42Sc in 2 scales

*strong attractive p-n interaction in 
3S, J =1, T =0 (IS) channel !

*contribution of the Tensor force ? 



GT transitions forming 
Low-Energy Super GT state

42Ca 42Sc

2n 2H (d)

B(GT) = 2.17     Smaller !

18O 18F B(GT) = 3.09

6Li6He B(GT) = 4.73

B(GT) = 6.0 ?     Large !
 (Sum rule) = 3 x |N-Z| = 6

J = O+  1+

g.s.

g.s.

g.s.

1st Ex state (IAS is the g.s.)



42Ca(3He,t)42Sc in 2 scales

*strong attractive p-n interaction in 
3S, J =1, T =0 (IS) channel !

*contribution of the Tensor force ? 

Do we see the Screening Effect of Nuclear Medium?



Summary
GT () operator : a simple operator !

* GT transitions: sensitive to the structure of |i> and |f>

 Low-energy Super GT state (LESGT state)

High resolution of the (3He,t) reaction
* Fine structures of GT transitions

(Precise comparison with mirror -decay results)

We got a key to study the IS pn-interaction !
(May be connected to Tensor ?)



GT-study Collaborations
Bordeaux (France) :  decay
GANIL (France) :  decay
Gent (Belgium) : (3He, t), (d, 2He), (’), theory
GSI, Darmstadt (Germany) :  decay, theory
ISOLDE, CERN (Switzerland) :  decay
iThemba LABS. (South Africa) : (p, p’), (3He, t)
Istanbul (Turkey): (3He, t),  decay
Jyvaskyla (Finland) :  decay
Koeln (Germany) :  decay, (3He, t), theory
KVI, Groningen (The Netherlands) : (d, 2He)
Leuven (Belgium) :  decay
LTH, Lund (Sweden) : theory
Osaka University (Japan) : (p, p’), (3He, t), theory
Surrey (GB) :  decay
TU Darmstadt (Germany) : (e, e’), (3He, t)
Valencia (Spain) :  decay
Michigan State University (USA) : theory, (t, 3He)
Muenster (Germany) : (d, 2He), (3He,t)
Univ. Tokyo and CNS (Japan) : theory,  decay
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