Parity-transfer reaction for study of spin-dipole 0⁻ mode

Masanori Dozono Center for Nuclear Study, the University of Tokyo

The 5th International Conference on "Collective Motion in Nuclei under Extreme Conditions" (COMEX5) 14-18 September 2015, Krakow

Scientific motivation

Spin-isospin modes ($\Delta S=1, \Delta T=1$) in nuclei play

an essential role in understanding of nuclear structure

M. N. Harakeh et al., "Giant Resonances", Oxford, 2001 M. Ichimura et al., PPNP 56, 446 (2006).

- Spin-Dipole (SD) mode
- (Isovector) SD operator

$$\hat{O}^{\lambda,\mu}_{\pm} = \sum \tau^i_{\pm} r_i [Y_1(\hat{r}_i) \times \sigma_i]^{\lambda}_{\mu}$$

- $\Delta L=1$, $\Delta S=1$, $\Delta T=1$
- ΔJ^π=0⁻, 1⁻, 2⁻

.

- SD 0⁻ mode (particular interest)
- Carries quantum numbers of pion ($J^{\pi}=0^{-}$, T=1)
- Reflects pion-like (tensor) correlations in nuclei

Tensor effects on O⁻ strengths

C. L. Bai, H. Sagawa et al., PRC 83, 054316 (2011); Private communication

Experimental studies of O⁻ states

Parity-transfer (16O,16F(0-)) reaction

Parity-transfer reaction is selective tool for 0-!

Clean probe for SD 0⁻ search

- Parity-trans. (¹⁶O, ¹⁶F(O⁻))
 - ¹⁶O (g.s., 0+) \rightarrow ¹⁶F (g.s., 0-)
 - Advantages
 - Selectively excite unnatural-parity states
 - No 1⁻ contribution
 - Single J^{π} for each ΔL_R
 - J^{π} (0-, 1+, 2-,...) can be assigned only by the angular distribution ($\Leftrightarrow \Delta L_R$)

	$\Delta L_R=0$	$\Delta L_R=1$	ΔL _R =2	
Parity-trans.	0—	٦+	2-	
(p,n),(d, ² He) etc.	0+,1+	0-, 1-, 2-	1+, 2+, 3+	

Parity-transfer (16O,16F(0-)) reaction

Parity-transfer reaction is selective tool for 0-!

Clean probe for SD 0⁻ search

- Parity-trans. (¹⁶O, ¹⁶F(O⁻))
 - ¹⁶O (g.s., 0+) \rightarrow ¹⁶F (g.s., 0-)
 - Advantages
 - Selectively excite unnatural-parity states
 - No 1⁻ contribution
 - Single J^{π} for each ΔL_R
 - J^{π} (0-, 1+, 2-,...) can be assigned only by the angular distribution ($\Leftrightarrow \Delta L_R$)

	$\Delta L_R=0$	$\Delta L_R=1$	ΔL _R =2	
Parity-trans.	0—	٦+	2-	
(p,n),(d, ² He) etc.	0+,1+	0-, 1-, 2-	1+, 2+, 3+	

First parity-transfer measurement : ¹²C(¹⁶O,¹⁶F(O⁻))¹²B at 250 MeV/u

We apply parity-trans. reaction to ¹²C target

- Why ¹²C ?
 - Known 0⁻ at E_x=9.3 MeV in ¹²B
 ⇒ Confirm effectiveness
 of parity-trans. reaction
 - Experimentally more feasible
 - High luminosity,
 - Low B.G. compared with heavier nuclei

H. Okamura et al. PRC 66 (2002) 054602

¹²C(¹⁶O,¹⁶F(O⁻)) experiment @ RIBF & SHARAQ

- Beam : Primary ¹⁶O
 - 250MeV/u, 10⁷ pps (radiation limit)
 - Dispersive matched beam
 - $(\Delta P/P)_{beam} \sim 0.1\%$
 - $(\mathbf{x} | \boldsymbol{\delta})_{\text{beamline}} = -10 \text{ m}$
- Target : ¹²C
 - Segmented plastic scinti.
 (active C target, 103.2 mg/cm²)
 - Determine beam x-position @ S0 (NOT used in present analysis)
- Coincidence measurement of
 ¹⁶F -> ¹⁵O + p
 - ¹⁵O: 2 LP-MWDCs @ S2
 - p:2 MWDCs @ S1

• Invariant-mass of ${}^{15}\text{O}+p \Rightarrow \text{Identify } {}^{16}\text{F(O}-)$ • Missing-mass \Rightarrow Deduce E_x in ¹²B and θ

Relative energy Erel vs Excitation energy Ex

¹²C(¹⁶O, ¹⁶F(O-))¹²B spectrum

- Different structure compared with (d,²He)
 - GT(1+) at 0 MeV
 - Hindered

¹²C(¹⁶O, ¹⁶F(O-))¹²B spectrum

- Different structure compared with (d,²He)
 - GT(1+) at 0 MeV
 - Hindered
 - SDR(2⁻) at 4.5 MeV
 - SDR(2⁻ & 1⁻) at 7.5 MeV
 - SD 0⁻ at 9.3 MeV ?
 - Enhancement

More analysis (ang. dist. etc.) required, but (¹⁶O,¹⁶F(O⁻)) seems promising for O⁻ study

Summary

- We propose parity-transfer reaction (¹⁶O,¹⁶F(O⁻)) for O⁻ study
- To confirm its effectiveness, we applied this reaction to ^{12}C . $\Rightarrow ^{12}C(^{16}O, ^{16}F(O^{-}))$ at 250A MeV @ RIBF & SHARAQ
- Preliminary results
 - Successful identification of ¹⁶F(0⁻)
 - Enhancement at ~9 MeV in ¹²B ⇒ Known 0⁻ at 9.3 MeV ?
 ⇒ (¹⁶O,¹⁶F(0⁻)) seems promising for 0⁻ study

This is FIRST-STEP study to apply parity-trans. reaction to Collective O⁻ strengths in heavier nuclei (^{40}Ca , ^{90}Zr ,...) \Rightarrow Systematic O⁻ study

Collaborators

RIKEN Nishina Center

- T. Uesaka, M. Sasano, J. Zenihiro, H. Sakai, T. Kubo, K. Yoshida,
 - Y. Yanagisawa, N. Fukuda, H. Takeda, D. Kameda, N. Inabe
- CNS, University of Tokyo
 - S. Shimoura, K. Yako, S. Michimasa, S. Ota, M. Matsushida,
 H. Tokieda, H. Miya, S. Kawase, K. Kisamori, M. Takaki, Y. Kubota,
 C. S. Lee, R. Yokoyama, M. Kobayashi, K. Kobayashi
- Kyushu University
 - T. Wakasa, K. Fujita, S. Sakaguchi, A. Okura, S. Shindo, K. Tabata
- Aizu University
 - H. Sagawa, M. Yamagami

Backup

O- Search via Polarization Measurements

Need to separate SD $0^-, 1^-, 2^- \Rightarrow$ Polarization observables

Azz measurement for (d,²He) at KVI

- SDR at 7.5 MeV .
 - Low-energy part : 2-
 - High-energy part : 1-

14

Coincidence measurement of p + HI @ SHARAQ

- Use SHARAQ as TWO spectrometers
 - Proton : Q-Q-D (S0 \rightarrow S1)
 - HI (A/Z~2) : Q-Q-D-Q-D (SO→S2)

Proton (SO→S1)

Momentum resolution : dp/p = 1/4330Angular resolution: ~ 2 mradMomentum acceptance: $\pm 12\%$ Angular acceptance: ~2.2 msr

HI (S0→S2)

Momentum resolution :	dp/p = 1/15300
Angular resolution	: ~ 1 mrad
Momentum acceptance	: ±1%
Angular acceptance	: ~3 msr

Invariant mass resolution : ~100 keV Missing mass resolution : ~1 MeV

Ion-optics study of S0 \rightarrow S1

x		a		y	
$(x x)_{\mathrm{S1}}$	-0.35	$(a x)_{\mathrm{S1}}$	-1.43	$(y y)_{\mathrm{S1}}$	-9.55
$(x a)_{\mathrm{S1}}$	0.01	$(a a)_{\mathrm{S1}}$	-3.03	$(y b)_{\mathrm{S1}}$	-4.70
$(x \delta)_{\mathrm{S1}}$	-1.57	$(a \delta)_{ m S1}$	-0.70		
$(x aa)_{ m S1}$	0.80	$(a aa)_{ m S1}$	-24	$(y ab)_{\mathrm{S1}}$	-36
$(x a\delta)_{ m S1}$	0.40	$(a a\delta)_{ m S1}$	11	$(y y\delta)_{\mathrm{S1}}$	34
$(x \delta\delta)_{ m S1}$	-7.3	$(a \delta\delta)_{ m S1}$	1.5	$(y b\delta)_{ m S1}$	24
$(x aaa)_{ m S1}$	-820	$(a aa\delta)_{ m S1}$	80	$(y ab\delta)_{ m S1}$	230
$(x a\delta\delta)_{ m S1}$	-57	$(a a\delta\delta)_{ m S1}$	-12	$(y b\delta\delta)_{ m S1}$	24
$(x \delta\delta\delta)_{ m S1}$	-29	$(a \delta\delta\delta)_{ m S1}$	7.8		

Measured matrix elements (units: m,rad)

¹²C(¹⁶O, ¹⁶F(O⁻))¹²B Spectrum

- Comparison with (d,²He)
 - GT(1+) at 0 MeV
 - Hindered
 - SDR(2⁻) at 4.5 MeV
 - SDR(2-&1-) at 7.5 MeV
 - SD 0⁻ at 9.3 MeV
 - Enhancement ?

More analysis (ang. dist. etc.) required, but (¹⁶O,¹⁶F(O⁻)) seems promising for O⁻ study

Figure 1: Schematic layout of the SHARAQ spectrometer.

Configuration	X - X' - Y - Y'
Effective area	$480~\mathrm{mm}^W \times 240~\mathrm{mm}^H$
Cell size	$12~\mathrm{mm}^W \times 10~\mathrm{mm}^t$
Numbers of channels	120
Anode wire	Au-W, 20 $\mu \mathrm{m}^{\phi}$
Potential wire	Cu-W, 80 μm^{ϕ}
Cathode plane	Al-Mylar, 2 μm^t
Counter gas	P10 : Ar - CH ₄ (90 - 10), 1 atm
Gas window	Al-Mylar, 25 $\mu \mathrm{m}^t$

Table 3: Specifications of the MWDCs. The X' (Y') plane is offset by half cell from the X (Y) plane.

Figure 2: Results of the ion-optical calculations for the particle trajectries from S0 to S1. Left and right panels represent horizontal and vertical trajectories, respectively, for the particles with $\Delta x = \pm 1 \text{ mm}$, $\Delta y = \pm 1 \text{ mm}$, $\Delta a = \pm 25 \text{ mrad}$, $\Delta b = \pm 25 \text{ mrad}$, and $\Delta p/p = \pm 10\%$.

Figure 3: Results of the ion-optics calculations for the particle trajectries from S0 to S2. Left and right panels represent horizontal and vertical trajectories, respectively, for the particles with $\Delta x = \pm 1 \text{ mm}$, $\Delta y = \pm 1 \text{ mm}$, $\Delta a = \pm 20 \text{ mrad}$, $\Delta b = \pm 50 \text{ mm}$, and $\Delta p/p = \pm 1\%$.

Figure 4: Correlation between the angle at the focal plane S1 and the angle at the focal plane S0 for a proton beam.

Figure 7: Correlation between $x_{\rm F6}$ and the position (left) and angle (right) at S2 for a ¹⁶O beam at 247 MeV/u. Upright correlations observed in the figures indicate that the lateral and angular dispersion-matching conditions are fulfilled.

0-遷移とパイ中間子(テンソル)相関

• なぜO-はパイ中間子(テンソル)相関に敏感か?

