

Giant Dipole Resonance with at very low temperatures and the critical behavior

Balaram Dey

Variable Energy Cyclotron Centre 1/AF Bidhan Nagar, Kolkata-700064, INDIA

Supervisor : Prof Sudhee Ranjan Banerjee

Giant Resonance : Collective modes of vibration of nucleus

Centroid Energy : Inversely proportional to the linear dimension of the nucleus. Strength Function: Gives an idea about the nuclear shape degrees of freedom. Resonance Width : Related to the damping mechanism of the collective motion.

Experimental observation

Mostly investigated Nucleus \rightarrow ¹²⁰Sn

Experimental systematic shows→ GDR width increases monotonically with temperatures (typically 6-10 MeV for change in 'T' of 1.5-2.5 MeV)

Why GDR width increases with increase in temperature ???

Thermal Shape Fluctuation Model : ($\Delta\beta$ vs T)

!! At low temperatures (T<1.5 MeV), the picture is not clear **!!**

Critical Temperature Fluctuation Model : Including an important physics point

GDR vibration itself produce a quadrupole moment causing the nuclear shape to fluctuate even at T = 0 MeV (GDR vibration induced intrinsic fluctuation) : β_{GDR}

Critical behavior :

At low T : β_{GDR} > Δβ
β_{GDR} → Independent of T
Δβ → Increases with temperature
Competition between β_{GDR} and Δβ

The effect of thermal fluctuation on GDR width will appear only when it becomes greater than the intrinsic fluctuation.

□ Study of GDR width at very low temperatures (T < 1.5 MeV).

Verify the critical behavior : The number of GDR width measurements at low T < 1 MeV are inadequate to conclude that GDR width remains same at below the critical point.

Mass dependence of the critical behavior.

We probed A=100 mass region at very low temperature (T ~ 0.8 to 1.5 MeV) to understand exact nature of the damping mechanism inside the nucleus.

Experimental Details

Projectile : ⁴He

Target : ⁹³Nb

E_{lab}: 28, 35, 42, 50 MeV

⁴He + ⁹³Nb \rightarrow ⁹⁷Tc^{*}

E* : 29.3, 36.0, 43.0, 50.4 MeV

J = 10 – 20 h

High energy gamma photons are the main tools to study GDR characteristics → Need a detector system with high detection efficiency and very good time resolution.

Experimental Setup

Electronics Setup

Schematic Electronics Circuit Diagram for LAMBDA and Multiplicity

Schematic Electronics Circuit Diagram for BC501A

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

12.

0.0

26.8 0.0

0.0

0.0

5.6

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

22.1 0.0

28.5 0.0

27.4 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.8

0.0

0.0

12.1 0.0

30.8 0.0

15.4

5.8

Extraction of GDR parameters

(1) Detector simulation studies using GEANT4

Detector response function must be folded with CASCADE calculation. Only after that it can be compared with experimental spectrum

NIM A 582 (2007) 603

(3) <u>Nuclear level density parameter from neutron evaporation spectrum</u>

Crucial input for CASCADE Calculations & important for the proper estimation of nuclear temperature

Neutron detector (BC501A) is generally used to measure the neutron energy spectrum by TOF technique

High energy gamma spectra along with CASCADE calculation

Final GDR spectra along with CASCADE calculation

PDM : PRC 86 (2012) 044333

Balaram Dey et al., Physics Letter B 731 (2014) 92

□ A systematic study of the Giant Dipole Resonance width at very low temperature (T = 0.8 - 1.5 MeV) in A ~ 100 mass region.

□ GDR widths have been compared with different theoretical calculations (TSFM, CTFM and PDM).

□ TSFM fails to explain the experimental data where as CTFM and PDM calculation nicely matches with the experimental data.

□ GDR induced intrinsic fluctuation plays an important role in describing the evolution GDR width as a function of temperature

□ First experimental data at below and above the critical temperature.

□ Microscopic PDM (with pairing fluctuation) also explain the data very well.

□ It would also be interesting if the pairing fluctuation can be included in the TSFM calculation.

GDR group at VECC, kolkata, India

HUNK

