

MINOS :

A NEW DEVICE FOR THE SPECTROSCOPY OF EXOTIC NUCLEI

A. Corsi CEA Saclay

COMEX5, Krakow, September 14-18th 2015

♦ Spectroscopy of exotic nuclei

♦ The MINOS device

♦ Physics program at RIBF

- Shell Evolution and Search for Two-plus Energies At the RIBF (May 2014, May 2015)
- 2-neutron correlation in Borromean nuclei (Dec. 2014)
- ²⁸O invariant mass (Nov. 2015)

Cea Spectroscopy of exotic nuclei

Quasi Free Scattering reactions

QFS is a powerful and clean probe for nuclear structure

Advantages for experiments:

	cleanliness	feasibility
(e,e'p)	++	
QFS	+	+
knockout	-	+
transfer	+	-

Renewed interest from theory:

- C.Bertulani: Eikonal/PWIA
- T. Aumann, C. Bertulani, J. Ryckebush, PRC 88 (2013)
- K.Ogata: DWIA
- K. Ogata, K. Yoshida, K. Minomo, arXiv:1505.06624v1 (2015)
- R.Crespo: Faddeev multipole scattering R. Crespo, A. Deltuva and E. Cravo, PRC 90 (2014)

OF 14 REPARACHE & COMPARISON

Cea RIBF facility at RIKEN

Primary beam	Energy (MeV/u)	Secondary beam (ΔN)	i (pps)
⁴⁸ Ca	350	⁴¹ AI (14)	1 (2014)
⁷⁰ Zn	350	⁵⁵ Sc (10)	12 (2012)
²³⁸ U	350	⁷⁹ Cu <mark>(15)</mark>	5 (2014)

 ΔN : number of neutrons from the stability

MINOS : Magic Numbers Off Stability

Hosted by Spin-Isospin Laboratory of RIKEN Nishina Center

MINOS : Magic Numbers Off Stability

Hosted by Spin-Isospin Laboratory of RIKEN Nishina Center

cea

The MINOS device: LH₂ target

- Mylar cell: 200 microns
- 100-200 mm length **≈ 1 g/cm**²
- 100 mm \leftrightarrow Eloss=65 MeV/u for 250 MeV/u ⁷⁸Ni
- 38 mm entrance window

BE LA RECREACE À CHRONTREE

The MINOS device: TPC

- Compact, low-budget material field cage (see also PANDA TPC, B. Voss et al.)
- Ar (82%) + CF₄ (15%) + C₄H₁₀ (3%) gas
- Drift velocity of around 4.5 cm/µs at 180 V/cm
- Transverse diffusion below 200 μ m/ \sqrt{cm}

The MINOS device: TPC

Micromegas detector with ~4000 pads

G. Charpak, I. Giomataris, et al., NIMA 376, 29 (1996).

Micromegas detector

OF 14 REPARTNER & COMPARISON

GET: Generic Electronics for TPC

Spokesperson: E.C.Pollacco CEA/IRFU, CENBG, GANIL, NSCL-MSU, RIKEN collaboration

OF LA RECARRICHE À L'INDUSTR

The MINOS device: electronics

Hough transform: pattern extraction technique

- ✓ Fast algorithm
- ✓ Pattern recognition & track fitting

OF 14 REPARTNER & COMPARTS

In-beam test of the TPC at HIMAC

October 2013

HIMAC accelerator @ Chiba, Japan Beams :

- ²⁰Ne @ 350 and 180 MeV/nucleon
- ⁴He @ 200 MeV/nucleon
- Target: 1 mm CH₂

C.Santamaria et al., in preparation

Spokespersons: P. Doornenbal (RIKEN), A. Obertelli (CEA)

OF LA RECARRICHE À L'HOUSEN

DALI2-MINOS-ZeroDegree setup

ZeroDegree Spectrometer

- Momentum acceptance: ±3%
- High resolution: P/DP≈6000

DALI2

- 186 Nal(TI) crystals
- ϵ =20% and $\Delta E/E$ =10% @ 1 MeV and β =0.6

⁶⁹Co(p,2p)⁶⁸Fe @ 200 MeV/u: proof of principle

BE LA RECARRENE À L'INDUSTR

Resolution in in-beam gamma spectroscopy

DALI2

Simulation at 250 MeV/u

AGATA

Simulation at 250 MeV/u 5T+5D AGATA clusters

Cea Study of dineutron correlation at SAMURAI

di-neutron (BEC like)

Cea Study of dineutron correlations at SAMURAI

Spokespersons: Y.Kubota (CNS, RNC) and AC (CEA Saclay)

- Core excitation via γ detection
- High momentum transfer to minimize final state interaction

→ Need high statistics : RIBF + MINOS thick target (15 cm)

Cea Spectroscopy of ²⁸O at SAMURAI

Benchmark for 3N forces

T. Otsuka *et al.,* PRL **105**, 032501 (2010) G. Hagen *et al.,* PRC **80**, 021306(R) (2009) A. Cipollone *et al.,* PRL **111**, 062501 (2013) H. Hergert *et al.,* PRL **110**, 242501 (2013)

Cea Spctroscopy of ²⁸O at SAMURAI

Spokesperson: Y. Kondo, Tokyo Institute of Technology

- Need high luminosity → RIBF+MINOS thick target
- Vertex tracking: improve decay energy resolution

Summary and perspectives

MINOS developed in 2011-2012 at CEA Saclay

Current MINOS program @ RIBF:

- New regions and methodologies explored in 2014-2015: N=20, N=34, N=50&Z=28, N=70, dineutron correlation
- Approved physics program up to 2016

Beyond this program:

• High-resolution gamma spectroscopy with AGATA, GRETINA,..

Missing+invariant mass measurement

MINOS development and local teams

S. Anvar, L. Audirac, G. Authelet, H. Baba, B. Bruyneel, D. Calvet, F. Chateau, A. Corsi, A. Delbart, P. Doornenbal, J.-M. Gheller, A. Giganon, T. Isobe, Y. Kubota, C. Lahonde-Hamdoun, D. Leboeuf, D. Loiseau, M. Matsushita, A. Mohamed, J.-Ph. Mols, T. Motobayashi, M. Nishimura, A. Obertelli, S. Ota, H. Otsu, C. Péron, A. Peyaud, E.C. Pollacco, G. Prono, J.-Y. Rousse, H. Sakurai, C. Santamaria, M. Sasano, R. Taniuchi, S. Takeuchi, T. Uesaka, Y. Yanagisawa, K. Yoneda

Physics collaborations

Di-neutron correlations Uesaka, Sasano, Zenihiro, Yoneda, Sato, Otsu, Shimizu, Baba, Isobe, Sako, Stul, Panin (RNC), **Kubota**, Dozono, Ota, Kobayashi M., Kiyokawa (CNS), **Corsi**, Obertelli, Santamaria, Pollacco, Lapoux, Gillibert, Calvet, Delbart, Gheller, Authelet, Roussé (CEA), Kobayashi N., Koyama, Miyazaki (Tokyo Univ.), Kobayashi T., Hasegawa, Sumikama (Tohoku Univ.), Nakamura, Kondo, Togano, Shikata, Tsubota, Saito, Ozaki (Tokyo Tech), Yasuda, Sakaguchi, Shindo, Tabata, Ohkura, Nishio (Kyushu Univ.), Nakatsuka (Kyoto Univ.),Yukie, Kawakami, Kanaya (Miyazaki Univ.), Marques, Gibelin, Orr (LPC Caen), Flavigny (IPNO), Yang, Feng (Peking Univ.), Caesar, Paschalis (TUD), Reichert (TUM), Kim (Ehwa Womans University)

Oxygen isotopes Y. Kondo, T. Nakamura, Y. Togano, M. Shikata, J. Tsubota (Tokyo Tech), H. Baba, H. Sato, K. Yoneda, H. Otsu, T. Isobe, M. Sasano, Y. Shimizu, T. Uesaka (RIKEN Nishina Center), T. Kobayashi (Tohoku University), F. Château, D. Calvet, A. Gillibert, J.-M. Gheller, V. Lapoux, A. Peyaud, A. Obertelli, A. Corsi, E.C. Pollacco, C. Santamaria (CEA Saclay), T. Aumann, H. Scheit (TU Darmstadt), N. Orr, J. Gibelin, F.M. Marques, S. Leblond, N.L. Achouri, F. Delaunay (LPC Caen), Y. Satou, S. Kim, J. Hwang (Seoul National University), T. Murakami, N. Nakatsuka (Kyoto University), C.R. Hoffman (Argonne National Laboratory), A. Navin, M. Rejmund, A. Lemasson (GANIL), S. Stephenson (Gettysburg college), H. Simmon (GSI)

SEASTAR N. Alamanos, G. de Angelis, N. Aoi, H. Baba, C. Barbieri, C. Bertulani, A. Corsi, F. Delaunay, Z. Dombradi, **P. Doornenbal**, T. Duguet, S. Franchoo, J. Gibelin, A. Gillibert, S. Go, M. Gorska, A. Gottardo, S. Grévy, J.D. Holt, E. Ideguchi, T. Isobe, A. Jungclaus, N. Kobayashi, T. Kobayashi, Y. Kondo, W. Korten, Y. Kubota, I. Kuti, V. Lapoux, S. Leblond, J. Lee, S. Lenzi, H. Liu, G. Lorusso, C. Louchart, R. Lozeva, F.M. Marques, I. Matea, K. Matsui, Y. Matsuda, M. Matsushita, J. Menendez, D. Mengoni, S. Michimasa, T. Miyazaki, S. Momiyama, P. Morfouace, T. Motobayashi, T. nakamura, D. Napoli, F. Naqvi, M. Niikura, **A. Obertelli**, N. Orr, S. Ota, H. Otsu, T. Otsuka, N. Pietralla, Z. Podolyak, E.C. Pollacco, G. Potel, G. Randisi, F. Recchia, E. Sahin, H. Sakurai, C. Santamaria, M. Sasano, A. Schwenk, Y. Shiga, Y. Shimuzu, S. Shimoura, J. Simonis, P.A. Soderstrom, S. Sohler, V. Soma, I. Stefan, D. Steppenbeck, T. Sumikama, H. Suzuki, M. Tanaka, R. Taniuchi, K.N. Tuan, T. Uesaka, J. Valiente Dobon, Zs. Vajta, D. Verney, H. Wang, V. Werner, Zh. Xu, *27*