The 5th international conference on "COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS"

High- and low-spin structures in the proton-particle neutron-particle ²¹⁰Bi nucleus

Natalia Cieplicka-Oryńczak

INFN, Sezione di Milano, Milano, Italy

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Outline

Why the ²¹⁰Bi nucleus?

An ideal nucleus for testing the shellmodel calculations: couplings between valence proton and valence neutron

An ideal system for studying phonon (3⁻ of ²⁰⁸Pb)-valence particles coupling

Experimental data

Low-spin structure – neutron capture experiment at Institute Laue-Langevin (Grenoble, France)

High-lying yrast states – deep-inelastic reactions for the system ²⁰⁸Pb + ²⁰⁸Pb (Argonne National Laboratory, USA)

Experiment – ILL Grenoble (PF1B line)

16 Ge detectors of EXILL array: 8 of EXOGAM, 6 of GASP, and 2 from ILL collaboration – coincidence measurements of gamma rays

Experiment – ILL Grenoble (PF1B line)

16 Ge detectors of EXILL array: 8 of EXOGAM, 6 of GASP, and 2 from ILL collaboration – coincidence measurements of gamma rays

8 detectors of EXOGAM arranged into ring around the target at every 45° so angular correlation measurements could be performed

Experimental results: level scheme

4605

Experimental results: level scheme

Angular correlations of γ rays from ²¹⁰Bi

The angular correlation function for a pair of coincident γ rays connecting the nuclear states with spins $J_i \rightarrow J \rightarrow J_f$ is usually expressed as:

```
W(\Theta) = 1 + A_2 P_2(\cos \Theta) + A_4 P_4(\cos \Theta)
```

 $\mathbf{\Theta}$ – the angle between the direction of emission of two γ rays

 $P_n(\cos \Theta)$ – Legendre polynomials

 $A_n = q_n A(1)A(2)$ – the coefficients which depend on the attenuation factor q_n as well as on the multipolarities of 1 and 2 γ rays and the spins of involved nuclear states

> $q_2 = 0.86(2)$ $q_4 = 0.60(3)$

Normalization: number of pairs of the detectors, efficiency \rightarrow W(Θ) norm0 = 0.495(5) (4 combinations) norm45 = 2.020(12) (16 combinations) norm90 = 1 (8 combinations)

Comparison with shell-model calculations for low-spin states

Kuo-Herling interactions were used.

Firmly known states used to fit TBME of p-n interaction E. K. Warburton, B. A. Brown, Phys. Rev. C 43, 602 (1991)

Comparison with shell-model calculations for low-spin states

3109

3070 3040

2921

2840

2819

2765

2610 2579

2314

2259

2238

 $rac{2138}{2135}$

- 2015

(3-

(6-

(4+

(5-) =

Observed in

other experiments

Deep-inelastic collisions

Gammasphere, Argonne National Laboratory, USA

²¹⁰Bi – level scheme

The sum of delayed spectra (double gates on every pair of previously known transitions: 398, 653, 1403, 1514 keV)

Previously known part of the level scheme (B. Fornal, Habilitation thesis, Raport No. 1939/PL (2004))

²¹⁰Bi –

The sum of delayed spectra (double gates on every pair of previously known transitions: 398, 653, 1403, 1514 keV)

211, 217, 350, 358, 362, 371, 414, 439, 783, 1104 keV

Angular distributions of γ rays from ²¹⁰Bi

The angular distribution function for a transition $J_i \rightarrow J_f$, where J represents the spin of nuclear state, is usually expressed as:

 $\pmb{\Theta}$ – the angle between the beam direction and the direction of γ ray emission

 $P_n(\cos \Theta)$ – Legendre polynomials

- $A_n = \alpha_n A_n^{max}$ the coefficients which depend on the attenuation factor α_n as well as on the multipolarity of a γ ray and the spins of involved nuclear states
 - $\alpha_2 = 0.6(1)$
 - $\alpha_4 = 0.2(5)$

Normalization: isotropic distribution of the 516-881-803-keV cascade deexciting the $125-\mu s$ isomer in 206Pb.

Angular momentum is divided between the fragments according to their masses (assuming rigid rotation)

$$\frac{J_1}{J_2} = \left(\frac{A_1}{A_2}\right)^{\frac{5}{3}}$$

Angular distributions of γ rays from ²¹⁰Bi

Type

M1

M1(+E2)

M1

E2

M1(+E2)

M1(+E2)

²¹⁰Bi – spin-parity assignments for the yrast states

Type

M1

M1

E2

²¹⁰Bi – shell-model calculations for the yrast states

Couplings with 3[–] excitation The higher states involve the promotions of at 2615 keV in ²⁰⁸Pb proton or neutron across the energy gap – 5996 (20)5845 518 -5748 the calculations with the core excitations 664 5478 296 783 must be performed -5181 217 $(\pi h_{9/2} \vee j_{15/2})12^+ \times 3^ (19^{-})$ 1065 (17^{-}) 3/1 4594 131, $(\pi i_{13/2} \vee g_{9/2})11^+ \times 3^-$ 0 4463 (15 224 364 ⁴²³⁹(16⁺ 15/ (14)-4085 ²¹⁰Bi structure arises from 1-p 1-n 4030 (πh_{9/2} v g_{9/2})10⁻ × 3⁻ couplings up to the 2725-keV state (14⁻) 1<u>6(1) ns</u> 3469 (15^+) 1514 1361 (13^+) 175 3294 744 3p_{1/2} 14 2613 2725 3p_{3/2} 2f_{5/2} 1821 1252 1403 $1i_{13/2}$ $\frac{12^{+}}{11^{+}}$ 1473 $1J_{15/2}$ Firmly known states 151 $2f_{7/2}$ 1322 1i_{11/2} used to fit TBME of p-n interaction •1h_{9/2} 653 2g_{9/2} 10^{-} 1050 E. K. Warburton, B. 669 A. Brown, Phys. Rev. 398 3.0<u>4 · 10⁶ y</u> 271 9 ²⁰⁸Pb C 43, 602 (1991) neutrons protons ²¹⁰Bi

Spin distribution (experimental results)

Summary

The investigated level structure of ²¹⁰Bi investigated was compared to shell-model calculations – some of the states must come from the <u>core excitations</u>.

The results of present analysis of ²¹⁰Bi structure will serve as an excellent <u>testing</u> ground for the future calculations.

Collaboration

S. Leoni, **G. Bocchi**, **S. Bottoni** (INFN Sezione di Milano and Universita degli Studi di Milano, Milano, Italy) **B. Fornal, B. Szpak, R. Broda, W. Królas, T. Pawłat, J. Wrzesiński** (Institute of Nuclear Physics, PAN, Krakow, Poland) **D. Bazzacco** (Dipartamento di Fisica e Asstronomia dell'Universita and INFN Sezione di Padova, Padova, Italy) **A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner** (Institute Laue-Langevin, Grenoble, France) **G. De France** (GANIL, Caen, France) **G. Simpson** (LPSC, Universite Joseph Fourier, Grenoble, France) **C. Ur** (INFN Sezione di Padova, Padova, Italy) **W. Urban** (Faculty of Physics, University of Warsaw, Warszawa, Poland) **R.V.F. Janssens, C. J. Chiara, M.P. Carpenter, F. G. Kondev, T. Lauritsen, S. Zhu** (*Physics Division, Argonne National Laboratory,* Argonne, IL, USA) Zs. Podolyak, M. Bowry, M. Bunce, W. Gelletly, R. Kempley, M. Reed, P. Regan, P. Walker, E. Wilson (University of Surrey,

Guilford, UK)

W. B. Walters (Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA)

G.J. Lane (Department of nuclear Physics, Australian National University, Canberra, Australia)

Thank you for your attention!