Spectroscopic Study of the Intruder S-wave in 12Be via Transfer Reaction

Chen Jie, Lou Jianling, Ye Yanlin

Peking University, Beijing, China
The halo nucleus ^{11}Be

- Neutron loosely bound $S_n=0.504$ MeV
- Larger radius $\text{rms}=2.91$ fm
- ^{10}Be core + 1 valance n

PRL 108, 192701 (2012), $^{10}\text{Be}(d,p)$ $S\sim0.71(5)$

PLB 461, 22-27 (1999) $^{11}\text{Be}(p,d)$ $S\sim16\%$

PRL 84, 35(2000) ^{11}Be 1n removal $S\sim22\%$

Nearly 100% intruder state in $^{11}\text{Be}_{\text{g.s.}}$
$^{12}\text{Be} \sim ^{11}\text{Be} + n$

Intruder state or Normal state

Chen Jie @ Peking University

September 17th, 2015
The structure of nucleus 12Be

- **disappearance** of conventional magic number: N=8
- **Isomeric state**: 0^+_2 331(12) ns

Two decay modes:
- E2 decay: 130 keV and 2.11 MeV gamma-rays 17(2)%
- E0 decay: internal conversion: negligible
 - e^+e^- pair **creation** 511 keV gamma 83(2)%

<table>
<thead>
<tr>
<th></th>
<th>0_1^+ G.S</th>
<th>0_2^+ Isomer</th>
<th>0_1^+ G.S</th>
<th>0_2^+ Isomer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intruder</td>
<td>normal</td>
<td>Intruder</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>d</td>
<td>p</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>F.C.Barke</td>
<td>0.33</td>
<td>0.34</td>
<td>0.32</td>
<td>0.56</td>
<td>Intruder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2</td>
<td>Intruder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>H.T.Fortune and R.Sherr</td>
<td>0.53</td>
<td>0.15</td>
<td>0.32</td>
<td>0.25</td>
<td>Intruder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>C.Romero-Redondo</td>
<td>0.68-0.77</td>
<td>0.10-13</td>
<td>0.13-19</td>
<td>0.15-0.23</td>
<td>Intruder</td>
</tr>
<tr>
<td>Three-body model</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.69-0.77</td>
<td></td>
</tr>
<tr>
<td>G.Blanchon pp-RPA</td>
<td>0.25</td>
<td>0.185</td>
<td>0.58</td>
<td>0.74</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Intruder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>M.Dufour NCSM</td>
<td>0.16</td>
<td>0.59</td>
<td>-----</td>
<td>-----</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knock-out reaction</td>
<td>0.68</td>
<td>0.32</td>
<td>-----</td>
<td>Intruder</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>S=0.56</td>
<td>S=0.48</td>
<td>S=0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge exchange</td>
<td>---</td>
<td>---</td>
<td>0.25</td>
<td>---</td>
<td>Intruder</td>
</tr>
<tr>
<td>reaction</td>
<td></td>
<td></td>
<td></td>
<td>---</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Transfer reaction</td>
<td>S=0.28 (0.17)</td>
<td>---</td>
<td>S=0.73 (0.51)</td>
<td>---</td>
<td>uncertain</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uncertain</td>
</tr>
</tbody>
</table>

- **Normal**: Normal state is dominant
- **Intruder**: Intruder state is dominant
- **Uncertain**: no d-wave, could not make sure

Experiments

- **Great difference**
- **0_2^+ Mix with 2^+ state**
Main goal:

Investigate the intruder s-wave strength in the ground state and low-lying excited state of ^{12}Be via the $d(^{11}\text{Be},p)$ transfer reaction at 20-30 MeV/u.

20-30 MeV/u:

1. S_f is independent of the incident energy in large energy range
2. Reduce the effect of complicated reaction mechanism
3. Beam production rate times reaction cross sections
New ideas

- **Decrease the background**
 Coincident measurement of $^{10-12}\text{Be}$ and light-charged particles

- **Remove the effect of proton in CD2 target**
 Compare the elastic scattering data of $^{11}\text{Be}+p$ to $^{11}\text{Be}+d$ to get the proton content in CD$_2$ target.

- **New technique to separate 0_2^+, measure Smaller angles data**
 Implantation-decay-detect gamma(stop and decay)

- **Measure the elastic scattering Channel** in the same experiment
Experimental Setup

Chen Jie @ Peking University

September 17th, 2015
Elastic scattering data of $^{11}\text{Be} + p$ and $^{11}\text{Be} + d$

To extract Optical Potential for the entrance channel of transfer reaction
"11Be elastic and breakup on protons"

PID on the zero degree telescope

Energy spectrum for 11Be

Cut 11Be on Tele0

Core excitation is important

Provision by A.M. Moro

CDCC \rightarrow considering the effect of breakup channels

XCDCC \rightarrow considering the effect of core excitation
11Be elastic and inelastic scattering on deuteron

Global JLM potential can reproduce the Angular distribution of 11Be+d breakup calculation for breakup of 11Be +d

Energy spectrum for 11Be

PID on the zero degree telescope

Provide by D.Y.Pang

Provide by A.M.Moro

Chen Jie @ Peking University

September 17th, 2015
Experimental result of transfer reaction
Experimental result of $^{11}\text{Be}(d,p)^{12}\text{Be}$

PID on the zero degree telescope

Energy spectrum for ^{12}Be

Kinematic loci for protons in coincidence with ^{12}Be on Tele0

Chen Jie @ Peking University

September 17th, 2015
Isomeric state (E0 decay was used)

\[\begin{align*}
1^- & : 2.68 \text{ MeV} \\
0^+ & : 2.24 \text{ MeV} \quad \text{T1/2} = 331 \text{ ns} \\
2^+ & : 2.1 \text{ MeV} \\
0^+ & : \text{g.s.} \\
\end{align*} \]

\(E0: 83\% \)\n\(511 \text{ keV} \)

\(E2: 17\% \)
\(130 \text{ keV and } 2100 \text{ keV} \)

Experimental result of $^{11}\text{Be}(d,p)^{12}\text{Be}$

Angular distribution of $^{11}\text{Be}(d,p)^{12}\text{Be}(\text{g.s.})$ \quad γ spectrum in coincidence with ^{12}Be on Tele0

<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>ADWA</th>
<th>DWBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>$0.20^{+0.03}_{-0.03}$</td>
<td>$0.14^{+0.02}_{-0.02}$</td>
</tr>
<tr>
<td>27</td>
<td>$0.41^{+0.11}_{-0.12}$</td>
<td>$0.24^{+0.07}_{-0.07}$</td>
</tr>
</tbody>
</table>

Error: 68% confidence

Chen Jie @ Peking University
Experimental result of $^{11}\text{Be}(d,p)^{12}\text{Be}$

<table>
<thead>
<tr>
<th></th>
<th>0^+_1 G.S</th>
<th>0^+_2 Isomer</th>
<th>0^+_1 G.S</th>
<th>0^+_2 Isomer</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intruder</td>
<td>normal</td>
<td>Intruder</td>
<td>normal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knock-out reaction</th>
<th>s d p</th>
<th>s d p</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Knock-out reaction</td>
<td>0.68</td>
<td>0.32</td>
<td>-----</td>
<td></td>
<td>Intruder</td>
</tr>
<tr>
<td>S=0.56</td>
<td>S=0.48</td>
<td>S=0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge exchange reaction</td>
<td>---</td>
<td>---</td>
<td>0.25</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Transfer reaction1</td>
<td>0.28 (0.17)</td>
<td>---</td>
<td>---</td>
<td>uncertain</td>
<td></td>
</tr>
<tr>
<td>Our result</td>
<td>S=0.14 (0.17)</td>
<td></td>
<td></td>
<td>S=0.28 (0.41)</td>
<td></td>
</tr>
</tbody>
</table>

- **Result**
 - Consistent with another transfer experimental results within error bar
 - Isomeric state: Determine the s-wave SF from Direct measurement

Chen Jie @ Peking University

September 17th, 2015
• O.P. for $^{11}\text{Be}+d$ is extracted from the same experiment
 Global OP including ^{11}Be density can reproduce angular distribution
 Core excitation of ^{11}Be is important
 the effect of H percent in CD$_2$ target are removed

• New experimental technical to detect isomeric state
 implant----stop-----decay
 get the angular distributions in smaller C.M system

• ADWA method is used to extract the s-wave SF
 G.S : $S_f = 0.20^{+0.04}_{-0.04}$, confirm transfer experimental results
 Isomeric state: $S_f = 0.41^{+0.08}_{-0.08}$, determined from direct measurement

• More theoretical calculations to explain our results

Intruder state or Normal state
Collaborators

Peking University, China
Lou Jianling, Ye Yanlin, Li Zhihuan, Li Qite, Ge Yucheng, Jiang Dongxing, Hua Hui, Yang Zaihong, Sun Yelei, Tian zheng Yang, Li Jing, Jiang Wei, Zang Hongliang

Osaka University, Japan
Aoi, Ong Hooi Jin, Eiji Ideguchi, Tetsuya, Mana, Suzuki, Tran Trong

RIKEN, Japan
Jenny Lee, Wu Jin, Liu Hongna, Wen Chao

Beihang University, China
Pang Danyang

Universidad de Sevilla, Spain
A.M. Moro

September 17th, 2015
Thank you for attention!