

Study of isospin symmetry in ⁸⁰Zr

Simone Ceruti University of Milano and INFN

The 5th International Conference on "COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS" >Isospin mixing
 >Isospin mixing using GDR γ decay
 > Isospin mixing in ⁸⁰Zr
 >Isospin mixing beyond nuclear structure
 > Conclusions

The Isospin Mixing in the ground state

- ➢Isospin symmetry: neutrons and protons can be considered as a same particle: the nucleon
- **Coulomb interaction** breaks this symmetry
- mixing probability in the nuclear ground state is defined as:

$$\alpha^{2} = \frac{|\langle I = 1 | H_{c} | I = 0 \rangle|^{2}}{\Delta E^{2}}$$

Connection with IAS properties and CKM matrix

A CN in an excited state has a finite lifetime τ

- The lifetime can be so short to not allow a complete mixing
- ➤At high excitation energy (and thus at short lifetime) the isospin symmetry is restored
- ➤Lifetime implies a dynamical behavior of the isospin mixing phenomenon

n,p,α,γ	CN
1	
rt	
f	

This **dynamical behavior** is descripted by the parameter α^2 , defined as:

H.L. Harney, A. Ritcher, H.A. Weidenmuller Rev. Mod. Phys. 58(1986)607 Harakeh et al., PLB 176 (1986) Kicinska et al., Nucl. Phys. A 36 (2005) Behr at al., PRL 70 (1993)

Colo' et al .PRC 54(1996)-M.N. Harakeh et al. Phys. Lett. B 176(1986)297 - A.Behr et al. Phys. Rev. Lett. 70(1993)3201 Sagawa et al Physics Letters B 444 1998. 1–6 - Satula et al PRL 103, 012502 (2009)

➤ In N=Z nuclei I=0

In N=Z nuclei the Electric Dipole transitions in long-wavelength limit are forbidden in states with the same isospin.

⁸⁰Zr is the heaviest N=Z Compound nucleus in the I=0 channel experimentally accessible with stable beams
 In ⁸⁰Zr the isospin mixing effects are "strong"
 The theoretical predictions depend on the nuclear interaction used

Experimental technique and previous result

A.Corsi et al. PRC 84, 041304(R) (2011)

Measurements and Analysis

AGATA – HECTOR⁺ array @ LNL

4 AGATA Clusters (12 capsules) 6 LaBr₃:Ce (3.5" x 8")

$E^* = 54 \text{ MeV} T = 2 \text{ MeV}$

With **AGATA** we identify the evaporation residues to tune statistical model

Measurements and Analysis

➢GDR parameters are consistent with those of previous experiment as expected

Preliminary fit result $\rightarrow \Gamma^{\downarrow}=12\pm 3 \text{ keV}$

> Γ↓ is consistent (within the error bars) with that one of previous experiment.
> Γ↓ doesn't change with temperature

 $\alpha^2 = 0.046 \pm 0.007$

Results

The data show clearly the temperature dependence of α^2

[1] Satula, Acta Phys.Polon. B42 (2011)
[2] A.Corsi et al. PRC 84, 041304(R) (2011)

Results

The data show clearly the temperature dependence of α^2

[1] Satula, Acta Phys.Polon. B42 (2011)
[2] A.Corsi et al. PRC 84, 041304(R) (2011)

Beyond nuclear structure: CKM matrix

Superallowed Fermi transition

I.S. Towner and J.C. Hardy PRC 82, 065501 (2010)

Conclusions

> We studied Isospin mixing at T > 0 using the GDR γ -decay as a probe

- \blacktriangleright two dataset are available at T=2.2 and 3 MeV on ⁸⁰Zr
- consistent GDR parameters for ⁸¹Rb
- > the same value of Coulomb spreading width (Γ^{\downarrow}) within error bar > α^2 decreases with temperature

With the theoretical help it is possible to extract the T=0 mixing from T>0 data

- Analysis shows that the measured trend of α² follows the theoretical one.
- From a simple analysis we obtain a value $\alpha^2 \sim 0.046$ at T=0

We shown the possibility to use α^2 for the estimation of isospin correction δ_C