

Signatures of the Giant Pairing Vibration in ¹⁴C and ¹⁵C nuclei

Francesco Cappuzzello

Università di Catania and INFN-Laboratori Nazionali del Sud

Catania (Italy)

The 5th international conference on COLLECTIVE MOTION IN NUCLEI UNDER EXTREME CONDITIONS"

The pairing force

isotopes

between 0⁺ ground states differing by two neutrons

The pairing force

Still basic open questions

Giant Pairing Vibrations (GPV)

R.A. Broglia and D. Bes PLB 69 (1977) 129

- Excitation of a pair across major shells
- Analogy with Giant Resonances Small amplitude perturbations (GDR, GQR)

What are the hypotheses?

Giant Pairing Vibrations (GPV)

- Mean field description of the system ground state (true for nuclei)
- Residual interaction in the pp channel
- Particle-hole symmetry (basic symmetry for systems of interacting fermions)

GPV theoretical predictions

Several theoretical studies:

Predicted properties of the GPV (heavy nuclei)

- L = 0 multipolarity
- Excitation Energy ~ 72 A^{-1/3}
- (~ 12 20 MeV)
- FWHM ~ 1-2 MeV
- Collectivity: B(GPV) ~ B(PV)
- Universality

✓ on heavy nuclei (Pb and Sn isotopes)

R.A. Broglia and D. Bes PLB 69 (1977) 129-133

L.Fortunato et al. EPJ A14, 37-42(2002)

✓ with weakly bound exotic nuclei ((⁶He,⁴He) transfer reactions)

W.von Oertzen and A.Vitturi, Rep.Prog.Phys.64 (2001) 1247 L.Fortunato, Phys.of Atomic Nuclei, Vol.66 (2003) 1445

✓ on light nuclei (Oxygen isotopes)

Excitation Energy ~ 20 MeV

E.Khan et al. PRC 69 (2004) 014314

B.Avez et al. PRC 78 (2008) 044318

Many experimental attempts:

✓ (p,t) and (t,p) reactions

- J. R. Shepard et al. NPA 322(1979)92
- G. M. Crawley et al. PRC 22 (1980) 316
- M. Matoba et al. PRC 27(1983) 2598
- G. M. Crawley et al. PRL 39 (1977) 1451
- G. M. Crawley et al. PRC 23 (1981) 589

A long story of unsuccesfull attempts

Experimental attempts

Many inconclusive experiments in 3 decades

Reaction mechanism

• GPV requires L = 0 transfer

• In transfer reactions typically large amount of angular momentum is transferred, especially at high excitation energy

1. Near the Coulomb barrier, weak sensitivity to angular momentum transfer

- 2. At high incident energy, large background
- 3. Between 3-10 times the Coulomb barrier

N. Anyas-Weiss et al. Phys. Rep. 12 (1974) 201

S. Kahana and A. J. Baltz Advances in Nuclear Physics Vol. 9

Projectile/target

Incident energy

1. Brink's matching conditions

$$\Delta L = (\lambda_2 - \lambda_1) + \frac{1}{2}k_0(R_1 - R_2) + Q_{eff} R/\hbar v \approx 0$$

D.M. Brink PLB 40 (1972) 37

2. Survival of a **preformed pair** in a transfer process favored if the initial and final orbitals are the same

(¹⁸O,¹⁶O) reactions

On light nuclei

Good candidates for L = 0 transitions

- ✓ Favorable Brink matching conditions (D.M. Brink PLB 40 (1972) 37)
- ✓ Preformed neutron pair in 18 O

✓ At 3-5 times the Coulomb barrier good compromise between background, selectivity and sensitivity to low angular momentum transfer

✓ ¹⁴C and ¹⁵C good benchmarks

L = 0 transitions

L = 0 transitions

S.Mordechai, et al., Nucl. Phys. A301 (1978) 463

S.Truong and H.T.Fortune, PRC 28 (1983) 977

About the experiment

Experimental setup

- ¹⁸O⁷⁺ beam from Tandem at 84 MeV
- ¹²C and ¹³C thin targets (50 µg/cm²)
- Ejectiles detected by the MAGNEX spectrometer
- Angular settings $\theta_{opt} = 6^{\circ}$, 12°, 18° $3^{\circ} < \theta_{lab} < 24^{\circ}$

MAGNEX

Optical characteristics	Actual values	
Maximum magnetic rigidity (Tm)	1.8	
Solid angle (msr)	50	Good compensation
Momentum acceptance	-14%, +10%	of the aberrations
Momentum dispersion (cm/%)	3.68	
First order momentum resolution	5400	F. Cappuzzello et al. Nova Publisher Inc (201

Quadrupole

Dipole

Focal Plane Detector

About the reaction mechanism

1. Transfer yields

We compared the transfer yields for inelastic scattering, one-, two-, three-neutron transfer in the same conditions

¹⁸**O**+¹³**C** 7° < θ_{lab} < 13°

Ejectile Mass (a.m.u.)

stripping

()

()

inelastic

()

counts

Enhancement of the two-neutron transfer channel

The 2n transfer is not a 2nd order process

TRANSFER OF A CORRELATED PAIR

¹⁴C spectrum via one- and two-neutron transfer

•Selectivity of natural parity states with large 2n⊗core overlap for the (¹⁸O,¹⁶O) reaction

Features of the (¹⁸O,¹⁶O) energy spectra

17

3. Angular distribution

Dominance of correlated transfer versus sequential two-step mechanism

Energy and width of the bumps

Gaussian model superimposed on a linear background

¹⁴C $E_{\chi} = 16.9 \pm 0.1 \text{ MeV}$ FWHM = 1.2 ± 0.3 MeV ¹⁵C $E_{\chi} = 13.7 \pm 0.1 \text{ MeV}$ FWHM = 1.9 ± 0.3 MeV

Changing incident energy

New experiment @ 270 MeV

@ 84 MeV incident energy

 $^{14}C_{GPV} E_x = 16.9 \pm 0.1 \text{ MeV}$ FWHM = 1.2 ± 0.3 MeV $^{15}C_{GPV}$ $E_x = 13.7 \pm 0.1 MeV$ FWHM = 1.9 ± 0.3 MeV

Projectile break-up contribution

$^{13}C(^{18}O,^{16}O)^{15}C @ 7^{\circ} < \theta_{lab} < 17^{\circ}$

Two independent semi-classical models

1) Removal of two independent neutrons from the projectile

- Transfer to the continuum of the target+n+n
- Two-step mechanism
- No n-n correlations
- Optical model S-matrix for the n-target interaction

F. Cappuzzello et al., PLB 711 (2012) 347

 2) Towing of a di-neutron system
 ➢ Extreme hypothesis of the removal of a dineutron from projectile
 ➢ TDSE approach

J.A. Scarpaci et al., PLB 428 (1998) 241

The ¹⁵C bump at 13.7 \pm 0.1 MeV is not reproduced

Similar results for ¹⁴C case

Bumps energy and width

cQRPA calculations

Pairing energy scale

Measured widths

¹⁴C $E_x = 16.9 \pm 0.1$ MeV ¹⁵C $E_x = 13.7 \pm 0.1$ MeV FWHM = 1.2 ± 0.3 MeV FWHM = 1.9 ± 0.3 MeV

 Consistent with the discussions about the GPV (W.von Oertzen and A.Vitturi, Rep.Prog.Phys.64(2001)1247)
 ¹⁵C bump has shorter half life

>We can speculate on the different contributions to the width

Multipolarity

Multipolarity: angular distributions

First L = 0 indication

Equal population of the *M*-states in heavy-ion reactions near the Coulomb barrier

- L ≠ 0 transitions: featureless shape
- \succ L = 0 transitions: oscillations clearly appear
- S. Kahana and A. J. Baltz Advances in Nuclear Physics Vol. 9

Multipolarity: calculations for ¹⁴C GPV

Common ingredients: a. Sao-Paulo parameter free double folding potential b. Extreme cluster model approximation for the two neutrons

1. Discretized continuum scheme calculations

A.M. Moro and F.M. Nunes, Nucl. Phys. A 767 (2006) 138

- Three body assumption finer details not accurate
- Global features: <u>L = 0 cross section absolute value is found consistent</u> with the experimental without any scaling factor

$\begin{bmatrix} 1 & & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1 & & \\$

2. CRC calculations

- Same approach used to describe transitions to bound and resonant states in ¹⁴C M. Cavallaro et al., PRC 88 (2013) 054601
- Calculations for various L components
- > Artificial energy value of 12 MeV (below S_{2n})
- No spectroscopic amplitudes available

Renormalization at $\theta_{CM} = 9^{\circ}$

Shape of the L = 0 calculation consistent with the experimental angular distribution

Both approaches suggest L = 0 transfer for the ¹⁴C resonance at 16.9 MeV

Collectivity

Sum rules

•Unfortunately no exact formulation of a sum rule in the particle-particle L=0 channel

•Typically the **transfer probability** is analyzed to *evaluate* the collectivity

Transfer probability

The GPV strength is predicted to be similar to that of the L = 0 transition to the ground state in Pb and Sn even-even isotopes

Semi-classical description of the relative motion

W. von Oertzen and A. Vitturi, Rep. Prog. Phys. 64 (2001) 1247 R.A. Broglia and A. Winther, Heavy Ion Reactions, (Addison-Wesley, 1991) I ransfer probability

 $7 7 a^{2}m$

¹⁴C $E_x = 16.9 \text{ MeV FWHM} = 1.2 \text{ MeV}$ ¹⁵C $E_x = 13.7 \text{ MeV FWHM} = 1.9 \text{ MeV}$

- ✓ Right energy
- ✓ Right width
- ✓ Right strength
- \checkmark L = 0 mode

GPV population

Particle-hole symmetry confirmation

Resonance decay

Neutron decay of ¹⁵C by time-of-flight

focal plane detector

MAGNEX to measure high resolution energy spectra for well identified reaction products

EDEN (IPN-Orsay) to study the decaying neutrons emitted by the observed resonances with good efficiency and energy resolution

Other systems

¹²⁰Sn(p,t)¹¹⁸Sn at 35 MeV (MAGNEX data)

The Cross Section of the GPV candidate in the range $8^{\circ} \le \vartheta_{lab} \le 12^{\circ}$ is $\sigma = 1.1 \pm 0.1 \mu b$

Agreement with B. Mouginot et al. PRC 83 (2011) 037302

Such a small value explains the historical difficulty to observe the GPV by (p,t) reactions.

Conclusions and outlooks

✓ First signature of the GPV

GPV signals in T = 1 and T = 0 np pairing?

No reason why they should not be there

⁶⁶Ni energy spectra

39

M. Cavallaro et al., accepted by PRC

QRPA-calculations

Response function for the transfer of a neutron pair on ¹²C

- 1) ${}^{12}C_{g.s.}$ with HFB:
- Mean field: Skyrme interaction
- Pairing interaction: zero-range density dependent
- Quasi-particle

$$V_{pair} = V_0 \left[1 - \left(\frac{\rho(r)}{\rho_0}\right)^{\alpha} \right] \delta(r_1 - r_2)$$

Unperturbed response function G₀

- 2) QRPA:
- ▶ Residual interaction $H = T + V = T + U_{HFB} + (V U_{HFB}) = T + U_{HFB} + V_{res}$
- ▷ p-p excitations
- Linear response function approach

Perturbed response function G

2. Energy spectra

 $\begin{bmatrix} 13C(180, 170) \\ 14C \\ \left[(1^{3}C_{gs})^{1/2^{-}} \otimes (1d_{5/2})^{5/2^{+}} \end{bmatrix}^{2^{-}, 3^{-}} \end{bmatrix}$

In the (¹⁸O,¹⁶O), the **suppression of s.p. states**, which would require an uncorrelated transfer of 2n and the breaking of the initial pair in the ¹⁸O_{g.s.}, reveals the minor role of the **two-step dynamics**

 $\begin{bmatrix} 12C(180, 160) \\ 14C \\ \left[(1^{2}C_{gs})^{0^{+}} \otimes (1d_{5/2}, 2s_{1/2})^{2^{+}, 4^{+}} \right]^{2^{+}, 4^{+}} \end{bmatrix}$

Break-up calculations

Sequential transfer to the continuum of uncorrelated neutrons (two independent break-up processes)

$$\begin{split} & \mathsf{E}_{\mathsf{x}} > \mathsf{S}_{\mathsf{n}} \colon \quad {}^{18}\mathsf{O} + {}^{13}\mathsf{C} \to {}^{16}\mathsf{O} + {}^{14}\mathsf{C}_{\mathsf{g.s.}} + \mathsf{n} \\ & \mathsf{E}_{\mathsf{x}} > \mathsf{S}_{\mathsf{2n}} \colon \quad {}^{18}\mathsf{O} + {}^{13}\mathsf{C} \to {}^{16}\mathsf{O} + {}^{13}\mathsf{C}_{\mathsf{g.s.}} + \mathsf{n} + \mathsf{n} \end{split}$$

1) Calculation of the S-Matrix **——** Transfer probability

2) Total transfer cross section

Semi-classical treatment of the relative motion

Initial state spectroscopic factor Core-target elastic scattering

Break-up calculations

Break-up calculations

CD-DWBA calculations

No continuum-continuum couplingAssumption of three-body continuum

L=1 isovector mode (GDR) is at about 25 MeV
L=0 GPV is the most likely mode from these calcualtions ⁴⁶

Data reduction

Particle Identification

Trajectory reconstruction technique

Reconstructed parameters

Diana Carbone

Background subtraction in ¹⁵C spectra

Diana Carbone

51

QRPA calculations

Linear response theory

Time dependent Hartree-Foch equation

$$\hbar\omega\frac{\partial R}{\partial t} = [h(R) + F(t), R(t)]$$

Weak external field including *p*-*h* and *p*-*p* operators

$$F = \sum_{ij} F_{ij}^{11} a_i^+ a_j + \sum_{ij} (F_{ij}^{12} a_i^+ a_j^+ + F_{ij}^{21} a_i a_j)$$

Small changes in the nuclear density

Bethe-Salpeter equation

$$\boldsymbol{\rho}' = \boldsymbol{G}\boldsymbol{F} \qquad \qquad \boldsymbol{\longrightarrow} \qquad \boldsymbol{G} = \boldsymbol{G}_0 + \boldsymbol{G}_0 \boldsymbol{V}\boldsymbol{G} = \frac{\boldsymbol{G}_0}{1 - \boldsymbol{G}_0 \boldsymbol{V}}$$

Two-nucleon transfer $S(\omega) = -\frac{1}{\pi} Im \int F^{12*}(\mathbf{r}) \mathbf{G}^{22}(\mathbf{r},\mathbf{r}';\omega) F^{12}(\mathbf{r}') d\mathbf{r} d\mathbf{r}'$

52

Reaction mechanism

Transfer yields

• Two-neutron transfer (¹⁶O)

Comparison between

• One-neutron transfer (¹⁷O)

• Inelastic scattering (¹⁸O)

Cross section calculations

Complete treatment of the transfer process

Diana Carbone

55

Previous calculations

Diana Carbone

CRC calculations

Sao-Paulo optical potential

$$V_{LE}(R, E) = V_F(R)e^{-\frac{4v^2(R)}{c^2}}$$

L.C.Chamon et. al. PRC 66 (2002) 014610 D. Pereira et al. PLB 670 (2009) 330

 $V_F(R) = \int \rho_1(r_1) \rho_2(r_2) v_{NN}(R - r_1 + r_2) dr_1 dr_2$ **Double-folding potential** \geq nucleon-nucleon interaction: M3Y v_{NN} 0 wide and systematic dataset $\rho(r)$ V_C W V_{LE} V(R) (MeV) $-\frac{4v^2(R)}{c^2}$ Pauli non-locality \geq -200 Imaginary part $W(R) = 0.6 \cdot V_{LE}(R)$ -300 2 6 8 10 12 0 14 Δ R (fm)

Diana Carbone

57