

A new high granularity Silicon Array for future reaction studies

Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 11

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

D.Beaumel, IPN Orsay

Direct reactions

A great tool to investigate Exotic Nuclei and astrophysics processes

Silicon technology

Landscape of Si detectors for DR studies

Light Beams

Fission fragments

Particle spectrocopy

E_x resolution: ~500keV

Particle-Gamma Spectroscopy

E_x resol.: ~5keV (AGATA case)

A new Si array for reaction studies

4π , fully integrable in PARIS/AGATA/EXOGAM2

Collaboration

- IPN Orsay, CEA Saclay, GANIL, LPC Caen (France)
- INFN Univ. of Padova, INFN-LNL Legnaro , INFN Univ. of Milano (Italy).
- Univ. of Huelva, <u>Univ. of Santiago de Compostella</u>, Univ. of Valencia (Spain)
- Univ. of Surrey, STFC Daresbury (UK)
- BARC, Mumbai (India).

GASPARD-TRACE collaboration agreement

Under elaboration (D.Mengoni, DB)

Goal : converge towards a common portable device to be used at

2 phases scheme : > 2015-2017 : (full) Si prototypes developments, Electronics dev. and full definition, TDR > 2017 ~ 2019? : Construction

GHT Collaboration Agreement

1. Introduction

GHT (acronym for GASPARD, HYDE and TRACE, in reference to the corresponding initial projects) is an international collaboration aimed to develop a new detector for optimal study of reactions using low and intermediate energy beams at existing and forthcoming radioactive ion beam facilities. It consists in a new type of compact, highly segmented, silicon array, fully integrable within next generation gamma detectors such as AGATA and PARIS. Such new type of Silicon-based array is also meant to offer state-of-the art particle identification to improve separation of the various reaction channels and reduce the physical background. Native integration of special targets such as the pure

R&D on Pulse Shape Discrimination with DSSD

Goal: establish the method for light particles and highly segmented detectors

- Effect of segmentation
- Lower E threshold for each particle ?
- > Minimum sampling frequency (Digital elec)
- ➤ n-side or p-side ?
- ➤ Filters (e.g. Haar wavelets transform, ...)
- Other possible observable : Rise time ?
- Radiation damage
- ▶

Detector:

- 500 um nTD DSSD BB13 design of MSL
- 8° cut
- 128X+128Y
- pitch<500um</p>
- special package
 90° kapton readout
 high density
 connectors

test experiments at the IPNO tandem

PSD for **Z=1** particles Test experiment at IPNO tandem Reaction: beam ⁷Li ⁷Li + ¹²C @ 35 MeV 2300 40um 500um Imax nTD 4p 4n ΔE 40um ΔE 40um 2050 nTD 500un nTD 100um PAD 2000 8 PACIs 32mV/MeV PAD 1000 1500 time (ns) 1300 Q Oppardo 1150 1150 1100 1050 5 MATACQ (20 ch) E=Qmax 1GHz nTD 100um/500um 128X+128Y strips BB13 100 Preamps : PACI gain ~32 mV/MeV GANIL DAQ Digitizers : 5 MATACQ - 1GHz sampling 1500 2000 1000 (~10Hz) Time (ns) GANIL DAQ : 20 digital channels 10Hz

PSD for light particles - Results

Reaction : ⁷Li + ¹²C at 35 MeV

Discrimination achieved down to E < 2.5 MeV

M.Assié et al., EPJA(2015)

PSD - Results for Z=1 particles

→ The sampling rate should be higher than 200MHz

- Effect of bias : best compromise is 300V
- Effect of P and N-side: lower threshold on P-side
- Other observables and Filters (Haar wavelets)
- Effect of sampling frequency: loss of discrimination below 250MHz

M.Assié et al., EPJA(2015)

Silicon developments

Final design (approved)

Silicon detectors plan (short term):

- .1st layer (trapez.): 2 prototypes ordered (Micron) in 2013 (IPNO)
- 1st layer(square) : 2 prototypes ordered (Micron) in 2014 (INFN-Padova)
- .2nd layer (thick square) & 2nd layer (thick trapez): BARC-IPNO

Specifications

- large area , 6" wafers, nTD, 500um thick
- 128X+128Y (pitch~700 um)
- <100> random cut (8deg)

- Thin frame / Kapton readout at 90deg /High density connectors

Test bench

Test of uniformity In resistivity

Leakage current /strip, capacitance/strip, interstrip resistance

Trapezoid under commissioning

Trapezoid DSSD prototype

Received June 23, 2015

Integration of electronics

FEE architecture (preliminary)

ASIC internal architecture

IPACI : 9-channel integrated *Charge* and *Current* output preamplifier

Status:

- ASIC and Testbench available, test starting soon

To do next:

- ASIC qualification via test input
- Coupling with a detector (June/15)
- Possibly ASIC redesign
- Design slow shaper

9 **Charge** and **Current** preamps

I-Channel performance (simulated!)	Det In harge output DC	Cf	Charge output In+ Lin- Out In+ Current output In+
	Charge Output		System data
Energy max (Si)	50 MeV	Technology	AMS 0.35µm BICMOS
Charge signal swing (50MeV)	1.6V single ended	Supply	3.3V
Charge gain	32mV/MeV	Detector's input	Compatible with [10pF 40pF]
Equivalent noise charge	7 keV	capacitance	range
(Input-refered, FWHM)	830 e- Si	Compensation can	Digitally tunneable within [0.5nF 2.25nF], step 0.25nF
Charge resolution	12.8 bits ENOB	Ourrent	10mA (40m)A() / Channel
Charge non-linearity	< 2%	consumption	12mA (40mW) / Channer
Charge output recovery time	100µs	Size	220 x 100µm (PACI block)
	Current Output		+ 130 x 70µm (Buffer ch) + 130 x 70µm (Buffer cu)
Current gain	7kΩ		
Current signal swing	1.5V single ended		
Current signal BW	[4MHz 120MHz]		

The CHyMENE H/D target system Cible d' HYdrogène Mince pour l' Etude des Noyaux Exotiques

System providing continuous extrusion of ¹*H or* ²*H through a rectangular extruder nozzle defining the target-film thickness*

- Hydrogen target in a solid phase near triple point sH₂ ~ 17 K
- > Thickness 50 200 μm
- No window C free
- Continuous flow in vacuum
 2-10mm/sec
- Compatible with particle detection

CHyMENE collaboration :

- CEA/IRFU Saclay project coordinator: A. Gillibert
- > IPN Orsay
- CEA/DAM Bruyères

Grant from French ANR ~550k€

CHyMENE - Design

Cryogenic system in the cryostat

CHyMENE - Status

- Now being commissioned
 Test under beam beg. of
 2016
- Further tests of thin ribbon production needed (Nozzle material, geometry surface treatment, ...)
- Need implement system for thickness measurement presently: α-source+SD

MUGAST (MUST2 - GASPARD – TRACE)

Implementing an intermediate configuration

- GASPARD-TRACE prototypes
 + few MUST2 telescopes
- > One-layer philosophy (VAMOS)
- > CHYMENE
- MUST2 electronics with new connectics

```
100 k€, 2 years (start : 2017)
```

In particular *stripping reactions e.g. (d,p)*

MUGAST (MUST2 - GASPARD – TRACE)

Reaction studies using the MUGAST+AGATA setup at VAMOS

Letter of Intent to the AGATA collaboration

D.Beaumel, IPN Orsay D.Mengoni, University and INFN Padova

1. Introduction

The GASPARD and TRACE high granularity Silicon arrays have been natively designed for optimal integration in new generation gamma detectors such as AGATA with the aim of performing high-resolution reaction studies. Indeed, the coupling to AGATA allows a very large gain in excitation energy resolution, in comparison with the case where the excitation energy is deduced from the recoil charged-particle measurement. The GASPARD and TRACE collaboration are now converging to build such new-generation Si ensemble in common, with a timeline of 2019-20 for completion of the final 4π array, ready for the emerging ISOL facilities, like SPES and SPIRAL1. A view of such ultimate GASPARD-TRACE setup sitting inside AGATA is shown in Fig.1.

MUGAST with EXOGAM & PARIS

« MUGAST » configuration = MUST2 + GASPARD (trapeze) +TRACE (square) available for AGATA campaign at GANIL (2017) read by MUST2 electronics (MUFEE+MUVI)

Possible gamma detector's configurations :

- > 6 PARIS clusters (if available)
- > 6 EXOGAM

Thank you