PHOTODISINTEGRATION OF 9BE THROUGH THE 1/2+ STATE AND PYGMY DIPOLE RESONANCE

Hiroaki Utsunomiya, Konan University, Kobe, Japan

H. Utsunomiya1, S. Katayama1, I. Gheorghe1,2, S. Imai1, H. Yamaguchi3, D. Kahl3, Y. Sakaguchi3, T. Shima4, K. Takahisa4, S. Miyamoto5

1 Konan University, Kobe, Japan
2 Extreme Light Infrastructure Nuclear Physics, Bucharest, Romania
3 Center for Nuclear Science, University of Tokyo, Saitama, Japan
4 Research Center for Nuclear Study, Osaka University, Osaka, Japan
5 Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Hyogo, Japan

The present research interest in nuclear structure of a borromean system 9Be ($\alpha + \alpha + n$) is threefold: 1) nucleosynthesis of 9Be by the 8Be(n,γ)9Be reaction via the 1/2$^+$ state near neutron threshold; 2) the nature of the 1/2$^+$ state; and 3) the nature of pygmy dipole resonance. Photodisintegration of 9Be was measured from the nucleosynthesis point of view in two experiments with laser-Compton scattering γ-ray beams [1, 2], which however resulted in a significant discrepancy in peak cross section immediately above the n + 8Be threshold. The nature of the 1/2$^+$ state is not elucidated experimentally though it can be a virtual state as discussed in the literature [3-5]. Furthermore, low-energy E1 strengths in 9Be referred to as pygmy dipole resonance (PDR) are not well investigated experimentally; the only existing data were obtained with bremsstrahlung [6].

We carried out a new measurement of photodisintegration of 9Be through the 1/2$^+$ state and PDR at the NewSUBARU facility. Quasi-monochromatic γ-ray beams with 1 – 2% energy spreads in FWHM were produced in laser Compton backscattering (LCS) from relativistic electrons in a range of 954 - 1121 MeV. A grating-fixed CO$_2$ laser ($\lambda=10.5915 \mu$m) was used to produce 1661 - 2232 keV (in maximum energy) γ-ray beams for the study of the 1/2$^+$ state, while a Nd:YVO$_4$ laser ($\lambda=1064$nm) to produce 5.78 – 16.93 MeV γ-ray beams for PDR. A 99% 9Be rod of 20mm in diameter and 40mm in length was irradiated. It is of essential importance to understand the characteristics of the LCS γ-ray beams used for the present experiment, i.e., the energy distribution, energy calibration, and flux. The characteristics of the γ-ray beam are presented in a poster separately.

We present photoneutron cross sections for the 1/2$^+$ state with improved accuracy with emphasis on its threshold behavior. It is shown that the peak cross section is rather consistent with the one reported in 2001 [1]. We also present photoneutron cross sections for PDR which follow the cluster dipole sum-rule [7].

REFERENCES