SEARCH FOR DOUBLE GAMOW-TELLER RESONANCE
VIA HEAVY-ION DOUBLE CHARGE EXCHANGE REACTION

Motonobu Takaki, Center for Nuclear Study, University of Tokyo, Tokyo, Japan

1 Center for Nuclear Study, University of Tokyo, Tokyo, Japan
2 RIKEN Nishina Center, Saitama, Japan
3 Research Center for Nuclear Physics, Osaka University, Osaka, Japan
4 Department of Physics, Kyoto University, Kyoto, Japan
5 Department of Applied Physics, Miyazaki University, Miyazaki, Japan

Among all two-phonon excitation modes, a Double Gamow-Teller Resonance (DGTR) is a missing piece for better understanding of two-phonon states in terms of the nuclear spin-dependent correlations. Possible existence of the DGTR was first proposed by Auerbach, Zamick, and Zheng in 1989 [1]. A basic question concerning the DGTR is that if the DGTR is a simple superposition of GTRs. According to conclusive results of pion double charge exchange reaction studies, double isobaric analogue resonances and double giant dipole resonances are the simple superposition [2]. However, the nuclear response can be anharmonic and we can expect occurrence of anharmonicity, especially when the spin-degrees of freedom play a role. Therefore, the experimental observation of the DGTR provides us with a unique opportunity to investigate the effect.

Heavy-ion double-charge exchange (HIDCX) reactions are the most promising spectroscopic tools for DGTRs. It can induce two-phonon excitations with spin and isospin transfer by two units [3]. In spite of the potential of HIDCX reactions as probes to DGTRs, there have not been many experiments with the reactions. The reason is that it is difficult to find a reaction with significant DGT strengths and a clear event identification capability. We have succeeded in inventing a new experimental method based on the (12C,12Be(0$^+$)) reaction in the first experiments in difficulties. The idea has been conceived through our previous double charge exchange studies with the 12C(18O,18Ne)12Be reaction. In the experiment, we found that this reaction has relatively large cross section for the second 0$^+$ state of 12Be at 0 degree. This is because 12Be(0$^+$) state in the final state is dominated by 0$\hbar\omega$ configuration as well as the initial 12C(0$^+_{g.s.}$) and intermediate 4Be(1$^+_{g.s.}$) states. Furthermore, this reaction bears an additional strong point: identification of the final state in the ejectile (12Be) is possible by detecting the delayed γ-ray emitted from the 12Be(0$^+$) state. The 12Be(0$^+$) state is a long-life isomer state and has a lifetime of 331 ns [4].

To investigate the DGTR in 48Ti, we performed the 48Ca(12C,12Be(0$^+$)) reaction experiment at Research Center for Nuclear Study (RCNP), Osaka University. The 100A MeV 12C beam bombarded a 48Ca-enriched target with the areal density of 10 mg/cm2. The outgoing particles were momentum-analyzed with the high-resolution magnetic spectrometer Grand Raiden. Excitation energies of the residual nuclei were measured with a missing mass method. The momentum-analyzed 12Be was stopped in one plastic scintillator at a focal plane and detected γ-rays from 12Be(0$^+$) state with NaI scintillators.

At present, we succeed in identifications of the outgoing 12Be particles and its characteristic γ-rays. Excitation energy spectra of 48Ti is going to be obtained. In the conference, the results of the 12C(18O,18Ne)12Be reaction and the DGTR search experiments will be reported.

REFERENCES