COLLECTIVE EXCITATIONS IN 166RE AND 162W BY MEANS OF GAMMA-RAY SPECTROSCOPY AND LIFETIME MEASUREMENTS

Hong Li, Royal Institute of Technology, Stockholm, Sweden

1 Department of Physics, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden
2 Department of Physics, Tsinghua University, Beijing 100084, China
3 Department of Physics, Beijing Normal University, Beijing 100875, China
4 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
5 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
6 Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
7 University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
8 Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany
9 Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom
10 School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom

In this talk, we will present results obtained as side products from the experiment: Search for non-collective transitions in 166Os, performed at the Accelerator Laboratory of the University of Jyväskylä, Finland. The aim of the experiment was to measure lifetimes of excited states in neutron-deficient nuclei in the region around 166Os using the recoil distance Doppler shift (RDDS) method [1].

Here, we focus on the investigation of the nuclei of 166Re and 162W. New level schemes of 166Re and 162W have been built with rotational-like bands identified for the first time [2,3]. The yrast band (1) for 166Re has been assigned to the $\pi h_{11/2}[514]9/2 \otimes i_{13/2}[660]1/2^+$ Nilsson configuration based on rotational characteristics and electromagnetic properties in comparisons with Woods Saxon mean-field [4,5], particle-rotor model (PRM) [6] and semiclassical calculations [7]. Configuration assignments for band (2) are discussed in terms of two alternative configurations: $\pi h_{11/2} \otimes h_{9/2}$ and $\pi d_{5/2} \otimes i_{13/2}$. Signature inversion is observed in band (2) and well reproduced by PRM calculations with the mixed $\pi h_{11/2}[514]9/2^- \otimes [f_{7/2}/h_{9/2}]3/2$ Nilsson configuration. Further experimental and theoretical studies of this phenomenon are needed. Lifetime measurements have been performed for three levels in the yrast band of 166Re, providing support for the theoretical interpretation of rotational excitations built on the $\pi h_{11/2}[514]9/2^- \otimes i_{13/2}[660]1/2^+$ configuration [8]. Tilted-axis cranking calculations based on a relativistic mean field (TAC-RMF) approach [9] have also been performed in order to investigate the possibility of magnetic rotation in 166Re.

REFERENCES

[2] H. J. Li, et. al., to be published.
[3] H. J. Li, et. al., to be published.
[8] H. J. Li, et. al., to be published.