EXPERIMENTAL RESULTS ON THE PYGMY DIPOLE RESONANCE USING THE NRF METHOD

Deniz Savran, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Beside the Giant Dipole Resonance (GDR), many nuclei show the feature of additional low-lying electric dipole (E1) strength below and around the particle separation energies, which is usually denoted as Pygmy Dipole Resonance (PDR) [1]. The existence of the PDR in nearly every studied nucleus and the smooth variation of its properties lead to the assumption that the PDR is a newly discovered collective mode. While some of the gross characteristics are reproduced by different theoretical model descriptions, its detailed structure and the degree of collectivity are a matter of ongoing discussions.

An excellent tool to investigate bound E1 excitations is the method of nuclear resonance fluorescence (NRF) [2], which has been used in the last years to perform systematic studies of E1 strength below the neutron separation energy in nuclei of different mass regions [1]. Besides the possibility to perform systematic studies of the gross features of low-lying E1 strength this experimental method allows the investigation of the fine structure or of individual states using high-purity Germanium (HPGe) detectors in the γ -ray spectroscopy. Modern photon sources for this kind of experiments are bremsstrahlung and laser-compton-backscattering (LCB). While experiments with bremsstrahlung allow to investigate a large energy region within one experimental run and to identify single photo-excited states, the mono-energetic and highly polarized character of LCB is ideal to investigate certain energy regions or individual states in detail. In addition, experiments with mono-energetic photons provide the possibility to get insight into the decay properties of the PDR [5]. To further increase the sensitivity to certain decay channels and to investigate in detail the decay behaviour of the PDR we recently performed γ - γ coincidence spectroscopy in combination with the LCB beam at the High-Intensity Photon Source (HI γ S) using the new installed γ^3 setup [3]. An overview on the available experimental data on low-lying E1 strength obtained with the NRF method will be presented.

REFERENCES

- [1] D. Savran et al., Prog. Part. Nucl. Phys. 70 (2013) 210
- [2] U. Kneissl et al., Rep. Prog. Phys. 70 (2007) 691
- [3] B. Löher et al., Nucl. Inst. and Meth. 723 (2013) 136